Wed 5/1 Physics 132

Outline

Models of Light: Waves

Office Hours (in course center):
Thursday 5/2 5-6.30pm
Friday $\quad 5 / 10 \quad 2-3 p m$ review questions $3-4 \mathrm{pm}$ office hours

Quiz 10

6.2

Correct E D B B

We have to 100 micron wide slits. What do we expect from light rays?

1. Two sharp bright spots
2. Two blurry bright spots
3. One wide blurry bright spot
4. One wide sharp bright spot
5. Something else

What a difference a slit makes

Single-slit pattern

The big deal here is that opening an additional slit makes it darker in some places.
No way this happens in either the ray or photon model.

The third model for light:

Electromagnetic wave

- Light is an oscillating electromagnetic wave. (Long story)
■ A "close-up" of a ray: a plane wave

It's hard to picture EM waves in 3D

- Let's build some intuition by working through a simpler example. Waves on the surface of water
(treating the height of the surface only that moves up and down - transvers to the wave motion: the actual bits of water move in small circles)
http://www.falstad.com/ripple/

Explore the PhET sim

http://phet.colorado.edu/en/simulation/wave-interference

Foothold wave ideas: Huygens' Model

■ The critical structure for waves are the lines or surfaces of equal phase: wavefronts.
■ Each point on the surface of a wavefront acts as a point source for outgoing spherical waves (wavelets).

- The sum of the wavelets produces a new wavefront.
- The waves are slower in a denser medium.

■ We can even make rays - sort of.

Beats

■ When we add two waves of the same frequency,

- if their phases differ by $0,2 \pi, 4 \pi, \ldots$. they add (constructive interference).
- if their phases differ by $\pi, 3 \pi, 5 \pi, \ldots$. they cancel

Phase difference and path difference

- Our two waves

$$
\begin{aligned}
& y=A \sin \left(k r_{1}-\omega t\right)+A \sin \left(k r_{2}-\omega t\right) \\
& y=A \sin \left(\phi_{1}-\omega t\right)+A \sin \left(\phi_{2}-\omega t\right)
\end{aligned}
$$

from different sources have a phase difference, $\phi_{1}-\phi_{2}$ because we are different distances from the two sources.

- The phase difference depends on the path difference:

$$
\phi_{1}-\phi_{2}=k r_{1}-k r_{2}=k\left(r_{1}-r_{2}\right)=k \Delta r=2 \pi \frac{\Delta r}{\lambda}
$$

A First Test: Interference

A First Test: Interference

When $\Delta \mathrm{r}=\mathrm{n} \lambda$, waves add.

When $\Delta \mathrm{r}=(\mathrm{n}+1 / 2) \lambda$, waves cancel

Following along path B

AT A LATER TIME after the time shown below the waves have traveled

Following along path B at a fixed instant of time

Following along path B at a fixed instant of time

Slits are really much, much closer than shown

For small angles, 5/1/13

$$
\underset{\text { For small angles, }}{\substack{\text { sin } \\ 5 / 1 / 13}} \stackrel{\Delta \sim \theta}{\sim}\left(\underset{\text { Physics } 132}{a}=\frac{\Delta r}{L} \Rightarrow y=\Delta r\left(\frac{L}{a}\right)_{\mathbf{2 0}}\right.
$$

