Models of Light: Waves

Office Hours (in course center):
Thursday 5/2 5-6.30pm
Friday 5/10 2-3pm review questions
 3-4pm office hours
<table>
<thead>
<tr>
<th>6.2</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>E</td>
<td>D</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>
We have to 100 micron wide slits. What do we expect from light rays?

1. Two sharp bright spots
2. Two blurry bright spots
3. One wide blurry bright spot
4. One wide sharp bright spot
5. Something else
What a difference a slit makes

The big deal here is that opening an additional slit makes it *darker* in some places.
No way this happens in either the ray or photon model.
The third model for light:
Electromagnetic wave

- Light is an oscillating electromagnetic wave. (Long story)
- A “close-up” of a ray: a plane wave

\[\vec{E}(x,y,z,t) = \vec{E}_0 \sin(kx - \omega t) \]
It’s hard to picture EM waves in 3D

Let’s build some intuition by working through a simpler example.

Waves on the surface of water

(treating the height of the surface only – that moves up and down – transvers to the wave motion: the actual bits of water move in small circles)
Can two sources lead to both “bright spots” and “dark spots”?

http://www.falstad.com/ripple/
Ripple tank analogy
Explore the PhET sim

http://phet.colorado.edu/en/simulation/wave-interference
Foothold wave ideas: Huygens’ Model

- The critical structure for waves are the lines or surfaces of equal phase: wavefronts.
- Each point on the surface of a wavefront acts as a point source for outgoing spherical waves (wavelets).
- The sum of the wavelets produces a new wavefront.
- The waves are slower in a denser medium.
- We can even make rays – sort of.
Beats

When we add two waves of the same frequency,

– if their phases differ by 0, 2π, 4π, ... they add (constructive interference).

– if their phases differ by π, 3π, 5π, ... they cancel.
Phase difference and path difference

- Our two waves from different sources have a phase difference, \(\phi_1 - \phi_2 \) because we are different distances from the two sources.

- The phase difference depends on the path difference:

\[
\phi_1 - \phi_2 = kr_1 - kr_2 = k(r_1 - r_2) = k\Delta r = 2\pi \frac{\Delta r}{\lambda}
\]
A First Test: Interference
A First Test: Interference

When \(\Delta r = n\lambda \), waves add.

When \(\Delta r = (n+1/2)\lambda \), waves cancel.
Following along path B at a fixed instant of time

starting from top slit

starting from bottom slit

Following along path A at an instant of time

Is the result
1. a maximum,
2. a minimum, or
3. neither?
AT A LATER TIME after the time shown below the waves have traveled

Following along path A
at an instant of time

1. has steady maximum
2. Oscillates
3. neither?
Following along path B at a fixed instant of time

starting from top slit

starting from bottom slit

Following along path A at an instant of time

Is the result
1. a maximum,
2. a minimum, or
3. neither?
Following along path B at a fixed instant of time

starting from top slit

starting from bottom slit

Following along path A at an instant of time

At point X the wave
1. has steady maximum
2. Oscillates
3. neither?
\[y = L \tan \theta \approx L \theta \]

\[\Delta r = a \sin \theta \approx a \theta \]
Slits are really much, much closer than shown so this point is almost all the way to the left.

For small angles, \(\sin \theta \sim \theta, \tan \theta \sim \theta \)

\[
\sin \theta = \frac{\Delta D}{a} \\
\tan \theta = \frac{y}{L}
\]

Maximum when \(\Delta r = n\lambda \)

Minimum when \(\Delta r = (n + \frac{1}{2})\lambda \)

\[
\frac{\Delta r}{a} = \frac{y}{L} \Rightarrow y = \Delta r \left(\frac{L}{a} \right)
\]