Mon 4/29 Physics 132

Prof. W. Losert

Outline

Models of Light: Waves

Office Hours (in course center): Thursday 5/2 5-6.30pm Friday 5/10 2-3pm review questions 3-4pm office hours

Light: Three models

- Newton's particle model (rays)
 - Models light as bits of energy traveling very fast in straight lines. Each bit has a color. Intensity is the number of bits you get.
- Huygens's/Maxwell wave model
 - Models light at waves (transverse EM waves). Color determined by frequency, intensity by square of a total oscillating amplitude. (Allows for cancellation – interference.)
- Einstein's photon model
 - Models light as "wavicles" == quantum particles whose energy is determined by frequency and that can interferer with themselves.

Modeling in Biology

Are there examples in biology where you also need different models ?

AMINO ACID SEQUENCE HP MODEL RIBBON DIACRAM COMPACT RANDOM WALK RECEPTOR TWO-STATE SYSTEM

Each model highlights different properties of the protein

- Hydrophobic character
- Folding property

Our goal: understand how light travels through thin slits

What do we expect from light rays?

- 1. Two sharp bright spots
- 2. Two blurry bright spots
- 3. One wide blurry bright spot
- 4. One wide sharp bright spot
- 5. Something else

What do we expect from photons going through a single slit?

- 1. When the slit gets thinner the spot gets thinner
- 2. When the slit gets thinner the spot gets wider
- 3. Something else

Spot actually gets wider... Does this mean light has a "size"?

What do we expect from Two waves going through two slits?

- 1. Two sharp bright spots
- 2. Two blurry bright spots
- 3. One wide blurry bright spot
- 4. One wide sharp bright spot
- 5. Something else

What a difference a slit makes

The big deal here is that opening an additional slit makes it *darker* in some places.

<u>No way</u> this happens in either the ray or photon model. \mathbf{q}

The third model for light: Electromagnetic wave

- Light is an oscillating electromagnetic wave. (Long story)
- A "close-up" of a ray: a plane wave

 $\vec{E}(x,y,z,t) = \vec{E}_0 \sin(kx - \omega t)$

Physics 132

It's hard to picture EM waves in 3D

Let's build some intuition by working through a simpler example.

Waves on the surface of water

(treating the height of the surface only – that moves up and down – transvers to the wave motion: the actual bits of water move in small circles)

http://www.falstad.com/ripple/

Ripple tank analogy

Can two sources lead to both "bright spots" and "dark spots"?