Physics 132 Prof. W. Losert

Outline

Waves

Midterm II FRIDAY

Office hours in Course Center Thursday 1-2 and 5-6.30

Ave: 4.4

Correct $\mathrm{B}>\mathrm{C}>\mathrm{A}=\mathrm{D} \quad \mathrm{F}$
a) 0, b) Down

The math

- We express the position of a bit of string at a particular time by labeling which bit of string by its x position, at x at time t the position of the string is $y(x, t)$.
- Since subtracting a d from the argument of a function $(f(x) \rightarrow f(x d))$ shifts the graph of the function to the right by an amount d, if we want to set the graph of a shape $f(x)$ into motion at a constant speed, we just need to set $d=v_{0} t$ and take

$$
f(x) \rightarrow f\left(x \quad v_{0} t\right)
$$

Sinusoidal waves

■ Suppose we make a continuous wiggle. When we start our clock ($\mathrm{t}=0$) we might have created shape something like

$$
y(x, 0)=A \sin k x
$$

- If this moves in the $+x$ direction, at later times it would look like

$y(x, 0)=A \sin k x$
 If this moves in the $+x$ direction, at later times it would look like

$$
\begin{aligned}
& \text { 1. } y(x, t)=A \sin \left(k x-v_{0} t\right) \\
& \text { 2. } y(x, t)=A \sin \left(k x+v_{0} t\right) \\
& \text { 3. } y(x, t)=A \sin \left[k\left(x-v_{0} t\right)\right] \\
& \text { 4. } y(x, t)=A \sin \left[k\left(x+v_{0} t\right)\right]
\end{aligned}
$$

Sinusoidal waves

■ Suppose we make a continuous wiggle. When we start our clock ($\mathrm{t}=0$) we might have created shape something like

$$
y(x, 0)=A \sin k x
$$

Why do we need a "K"

- If this moves in the $+x$ direction, at later times it would look like

$$
y(x, t)=A \sin k\left(x \quad v_{0} t\right)
$$

Interpretation - Wavelength and Period

$$
y=A \sin (k x-\omega t) \quad \omega \equiv k v_{0}
$$

Fixed time: Wave goes a full cycle when
$k x: 0 \rightarrow 2 \pi$
$x: 0 \rightarrow \frac{2 \pi}{k} \equiv \lambda$
(wavelength)

Fixed position: Wave goes a full cycle when $\omega t: 0 \rightarrow 2 \pi$
$t: 0 \rightarrow \frac{2 \pi}{\omega} \equiv T \quad$ (period)

How does T, f and ω connect to v_{0} ?

 $=k v_{0}$?Interpret

$$
\begin{aligned}
& \quad=2 f=\frac{2}{T} \quad k=\frac{2}{} \\
& =k v_{0} \quad 2 f=\frac{2}{2} v_{0} \quad \text { or } \\
& f=v_{0} \\
& \text { Interpret } \\
& \frac{1}{T}=v_{0}
\end{aligned}
$$

