Physics 132 Prof. W. Losert

#### **Outline**

#### Waves

#### **Midterm II FRIDAY**

Office hours in Course Center Thursday 1-2 and 5-6.30

## Foothold principles: Mechanical waves

- Key concept: We have to distinguish the motion of the bits of matter and the motion of the pattern.
- Mechanism: the pulse propagates by each bit of string pulling on the next.
- Pattern speed: a disturbance moves into a medium with a speed that depends on the properties of the medium (but not on the shape of the disturbance)

$$v_0 = \sqrt{T/m}$$

- $v_0$  = speed of pulse T = tension of spring  $\mu$  = mass density of spring (*M*/*L*)
- Matter speed: the speed of the bits of matter depend on both the size and shape of the pulse and pattern speed.





# The math

- We express the position of a bit of string at a particular time by labeling which bit of string by its x position, at x at time t the position of the string is y(x,t).
- Since subtracting a *d* from the argument of a function  $(f(x) \rightarrow f(x - d))$  shifts the graph of the function to the right by an amount *d*, if we want to set the graph of a shape f(x) into motion at a constant speed, we just need to set  $d = v_0 t$  and take  $f(x) \rightarrow f(x - v_0 t)$

4

## How do waves combine?

We know how one wave moves. What happens when we get two waves on top of each other?





What happens after the waves collide?



4. Other



### How about on the same side?



# Sinusoidal waves

Suppose we make a continuous wiggle. When we start our clock (t = 0) we might have created shape something like

$$y(x,0) = A\sin kx$$

Why do we need a "*k*"

If this moves in the +x direction, at later times it would look like

$$y(x,t) = A\sin k(x - v_0 t)$$