Outline

Waves

Midterm 2 next FRIDAY

Office hours Thursday 5-6.30

Displacements on an elastic string / spring

\square Each bit of the string can move up or down (perpendicular to its length) - transverse waves
\square Each bit of string can also move toward/away along the string length if the string is elastic (most notable on very deformable strings such as slinky, rubber band). - longitundinal waves

How do the beads move?

- Sketch the y position of the bead indicated by the arrow as a function of time

If this is the space-graph (photo at an instant of time) what does the time-graph look like for the bead marked with a red arrow?

1. Choice One
2. Choice Two
3. Choice Three
4. Choice Four
5. Choice Five
6. Choice Six
7. Choice Seven
8. Choice Eight

Describing the motion of the beads

- Sketch the velocity of each bead in the top figure at the time shown Pulse moving to the right

A pulse is started on the string moving to the
right. At a time t_{0} a photograph of the string would look like figure 1 below. A point on the string to the right of the pulse is marked by a spot of paint. (x is horizontal and right, y is vertical and up)
Which graph would look most like a graph of the y displacement of the spot as a function of time?

7 None of these

A pulse is started on the string moving to the
right. At a time t_{0} a photograph of the string would look like figure 1 below. A point on the string to the right of the pulse is marked by a spot of paint. (x is horizontal and right, y is vertical and up)

Which graph would look most like a graph of the \mathbf{x} velocity of the spot as a function of time?

7 None of these

A pulse is started on the string moving to the
right. At a time t_{0} a photograph of the string would look like figure 1 below. A point on the string to the right of the pulse is marked by a spot of paint. (x is horizontal and right, y is vertical and up)

Which graph would look most like a graph of the y velocity of the spot as a function of time?

7 None of these

A pulse is started on the string moving to the
right. At a time t_{0} a photograph of the string would look like figure 1 below. A point on the string to the right of the pulse is marked by a spot of paint. (x is horizontal and right, y is vertical and up)
Which graph would look most like a graph of the y force on the spot as a function of time?

7 None of these

What controls the widths of the pulses in time and space?

Width of a pulse

\square The amount of time the demonstrator's hand was displaced up and down determines the time width of the t-pulse, Δt.
\square The speed of the signal propagation on the string controls the width of the x-pulse, ΔL.

- The leading edge takes off with some speed, v_{0}.
- The pulse is over when the trailing edge is done.
- The width is determined by "how far the leading edge got to" before the displacement was over.

$$
L=v_{0} t
$$

What Controls the Speed of the Pulse on a Spring?

To make the pulse go to the wall faster

1. Move your hand up and down more quickly (but by the same amount).
2. Move your hand up and down more slowly (but by the same amount).
3. Move your hand up and down a larger distance in the same time.
4. Move your hand up and down a smaller distance in the same time.
5. Use a heavier string of the same length under the same tension.
6. Use a string of the same density but decrease the tension.
7. Use a string of the same density but increase the tension.
8. Put more force into the wave,
9. Put less force into the wave.

Speed of a bead

\square The speed the bead moves depends on how fast the pulse is moving and how far it needs to travel to stay on the string.

Foothold principles: Mechanical waves

\square Key concept: We have to distinguish the motion of the bits of matter and the motion of the pattern.
\square Mechanism: the pulse propagates by each bit of string pulling on the next.
\square Pattern speed: a disturbance moves into a medium with a speed that depends on the properties of the medium (but not on the shape of the disturbance)
\square Matter speed: the speed of the bits of matter depend on both the Amplitude and shape of the pulse and pattern speed.

Dimensional analysis

\square Square brackets are used to indicate a quantities dimensions

- mass (\mathcal{M}), length (\mathcal{L}), or time (T)

$$
\begin{aligned}
& -[m]=\mathscr{M} \\
& -[L]=\mathcal{L} \\
& -[t]=\mathcal{T} \\
& -[F]=\mathcal{M L} / \mathcal{T}^{2}
\end{aligned}
$$

\square Build a velocity using mass (m), length (L), and tension (T) of the string:

$$
\begin{aligned}
& -[v]=\mathcal{L} / \mathcal{T} \\
& -[T]=\mathcal{M L} / \mathcal{T}^{2} \\
& -[T / m]=\mathcal{L} / \mathcal{T}^{2} \\
& -[T L / m]=\mathcal{L}^{2} / \mathcal{T}^{2}
\end{aligned}
$$

$$
v_{0}^{2}=\frac{T L}{m}
$$

$$
\text { or, using } \quad=m / L \quad v_{0}=\sqrt{\frac{T}{-}}
$$

Foothold principles: Mechanical waves

\square Key concept: We have to distinguish the motion of the bits of matter and the motion of the pattern.
\square Mechanism: the pulse propagates by each bit of string pulling on the next.
\square Pattern speed: a disturbance moves into a medium with a speed that depends on the properties of the medium (but not on the shape of the disturbance)

$$
v_{0}=\sqrt{T /}
$$

$$
\begin{aligned}
& v_{0}=\text { speed of pulse } \\
& T=\text { tension of spring }
\end{aligned}
$$

$$
\mu=\text { mass density of spring }(M / L)
$$

\square Matter speed: the speed of the bits of matter depend on both the size and shape of the pulse and pattern speed.

