March 28, 2013

Physics 132

Prof. W. Losert

<u>Outline</u>

Oscillations and Waves

Office hours Thursday 4/3: 3-4.30

Learning about Oscillations and waves

- Why to learn it
 - How the ear senses sound
 - Sound itself
 - Brain waves
 - Heart contraction waves
 - Molecule oscillations

- What to learn
 - How to describe oscillations mathematically (sin, cos)
 - How to think about waves
 - Resonances

- Position of the cart depends on time t
- Lets call the x position of the cart: A(t)

Doing the Math: The Equation of Motion

Newton's equation for the cart is

$$a = \frac{F_{net}}{m} = \frac{-kA(t)}{m} = -\left(\frac{k}{m}\right)A(t)$$

What kind of a quantity is k/m? (i.e. what is its "Dimension"

$$\begin{bmatrix} k \\ m \end{bmatrix} =$$

Mathematical structure

Express a as a derivative of A(t).

$$\frac{d^2 A(t)}{dt^2} = -\omega_0^2 A(t)$$

Except for the constant, this is like having a function that is its own second derivative.

$$\frac{d^2f}{dt^2} = -f$$

In calculus, we learn that sin(t) and cos(t) work like this. How about: $x = \cos t^{2}$

■ How do we define A=0 ?

- The origin (where A=0) is chosen at the initial state of the spring
- 2. The origin is chosen at the unstretched state of the spring
- 3. The origin can be chosen arbitrarily

How do we define t

- 1. t=0 is chosen at the initial state of the spring
- 2. t=0 is chosen when the string is not stretched.
- 3. t=0 can be chosen arbitrarily

Interpreting the Result

- We'll leave it to our friends in math to show that these results actually satisfy the N2 equations.
- What do the various terms mean?
 - A_{max} is the maximum displacement the *amplitude* of the oscillation.
 - What is ω_0 ? If T is the *period* (how long it takes to go through a full oscillation) then

$$W_0 t: 0 \to 2\rho$$

$$t : 0 \to T$$

$$W_0 T = 2\rho \implies W_0 = \frac{2\rho}{T}$$

Physics 132

Graphs: $sin(\theta) vs cos(\theta)$

- Which is which? How can you tell?
- The two functions sin and cos are derivatives of each other (slopes), but one has a minus sign. Which one? How can you tell?

Graphs: $sin(\theta) vs sin(\omega_0 t)$

- For angles, $\theta = 0$ and $\theta = 2\pi$ are the same so you only get one cycle.
- For time, t can go on forever so the cycles repeat.

What does changing w_0 do to this graph?

If curve (A) is

 $A\cos(W_0 t)$

which curve is

 $A\cos(2W_0t)?$

- $1. \quad (\mathbf{A})$
- 2. (B)
- 3. (C)
- 4. None of the above.

Which of these curves is described by $A\cos(W_0t + f)$

with $\phi > 0$ (and $\phi << 2\pi$)?

- 1. (A) 2. (B)
- 2. (**b**) 3. (**C**)
- 4. None of the above.