Outline

Oscillations and Waves

Office hours Thursday 4/3: 3-4.30

Learning about Oscillations and

waves

- Why to learn it
- How the ear senses sound
- Sound itself
- Brain waves
- Heart contraction waves
- Molecule oscillations
- What to learn
- How to describe oscillations mathematically (sin, cos)
- How to think about waves
- Resonances
- Position of the cart depends on time t
- Lets call the x position of the cart: $A(t)$

Doing the Math:

The Equation of Motion

- Newton's equation for the cart is

$$
a=F_{n e t} / m=-k A(t) / m=-\left(\frac{k}{m}\right) A(t)
$$

- What kind of a quantity is k / m ? (ie. what is its "Dimension"

$$
\left[\frac{k}{m}\right]=
$$

Mathematical structure

- Express a as a derivative of $A(t)$.

$$
\frac{d^{2} A(t)}{d t^{2}}=-\omega_{0}^{2} A(t)
$$

- Except for the constant, this is like having a function that is its own second derivative.

$$
\frac{d^{2} f}{d t^{2}}=f
$$

- In calculus, we learn that $\sin (\mathrm{t})$ and $\cos (\mathrm{t})$ work like this. How about:

$$
x=\cos t ?
$$

■ How do we define $A=0$?

1. The origin (where $A=0$) is chosen at the initial state of the spring
2. The origin is chosen at the unstretched state of the spring
3. The origin can be chosen arbitrarily

- How do we define t

1. $t=0$ is chosen at the initial state of the spring
2. $t=0$ is chosen when the string is not stretched.
3. $t=0$ can be chosen arbitrarily

Interpreting the Result

- We' ll leave it to our friends in math to show that these results actually satisfy the N2 equations.
- What do the various terms mean?
- $A_{\max }$ is the maximum displacement - the amplitude of the oscillation.
- What is ω_{0} ? If T is the period (how long it takes to go through a full oscillation) then

$$
\begin{aligned}
{ }_{0} t & : 0 \\
t \quad: & \rightarrow 2 \\
t \quad 0 & \rightarrow T \\
{ }_{0} T & =2 \underset{\text { Physics } 132}{\Rightarrow}{ }_{0}=\frac{2}{T}
\end{aligned}
$$

Graphs: $\sin (\theta)$ vs $\cos (\theta)$

- Which is which? How can you tell?
- The two functions sin and cos are derivatives of each other (slopes), but one has a minus sign. Which one?
How can you tell?

\sin

Graphs: $\sin (\theta)$ vs $\sin \left(\omega_{0} t\right)$

- For angles, $\theta=0$ and $\theta=2 \pi$ are the same so you only get one cycle.
- For time, t can go on forever so the cycles repeat.

What does changing ω_{0} do to this graph?

(C)

If curve (A) is

$A \cos \left({ }_{0} t\right)$

which curve is

$A \cos \left(2{ }_{0} t\right) ?$

1. (A)
2. (B)
3. (C)
4. None of the above.

Which of these curves is described by
$A \cos \left({ }_{0} t+\right)$
with $\phi>0($ and $\phi \ll 2 \pi)$?

1. (A)
2. (B)
3. (C)
4. None of the above.
