March 25, 2013

Physics 132

Prof. W. Losert

Outline

Nernst Potential

Office hours Thursday after spring break 4-5.30

Nernst Potential

Difference in electrostatic potential across a membrane. c_1 and c_2 are concentrations of ions on either side of the membrane

$$\Delta V = \frac{k_B T}{q} \ln\left(\frac{c_2}{c_1}\right)$$

Fluid with KCl dissolved.

Biology Background Different # of Ions in a Cell than outside

Table 4.1-1: Intra- and extracellular ion concentrations		
lon species	Concentration inside cell	Concentration outside cell
Na ⁺	15 mM	150 mM
K ⁺	150 mM	6 mM
Cl⁻	9 mM	125 mM
Ca ⁺⁺	100 n M	1.2 mM

http://watcut.uwaterloo.ca/webnotes/Pharmacology/page-4.1.html

Does this concentration difference lead to an electrostatic potential?

- 1. Yes
- 2. No
- 3. Depends

Does opening a channel lead to a potential difference?

- 1. Yes
- 2. **No**
- 3. Depends

6

Biology Background:

Ion Channels that only let Potassium through (channels for other types of ions also exist)

http://www.rcsb.org/pdb/explore/jmol.do?structureId=1BL8&bionumber=1

Below you see a membrane that has a channel that is permeable for one of the ions only.

- 1. The membrane is permeable to positive ions
- 2. The membrane is permeable to negative ions
- 3. Depends on the initial distribution of ions
- 4. other

Two boxes one starting with 18 red and blue molecules, the other with 6 of each kind. Membrane has a channel THAT IS ONLY PERMEABLE to blue molecules. At the start (shown)

- 1. Blue molecule are equally likely to enter the channel on each side
- 2. Blue molecules are 3 times more likely to enter the channel on the right
- 3. Blue molecules are 3 times more likely to enter the channel on the left
- 4. Not enough information

Sketch equilibrium state

- Electric fields?
 - 1. None
 - 2. Near membrane
 - 3. everywhere

Quantifying the electrostatic energy penalty: how much more (or less) likely is it for an ion to have an electrostatic energy of E₁ compared to E₀

$$1. P = e^{\frac{E_1 - E_0}{k_B T}}$$

5. Need more information

$$2. P = e^{\frac{E_1 - E_0}{k_B T}}$$

Nernst Equation

- Diffusion: Concentration gradient in the presence of ion channel -> ions flow to equilibrate concentration
- Electrostatic potential: only one ion species can flow -> electrostatic potential builds up -> makes it less likely for ions to keep flowing across channel

$$\Delta V = \frac{k_B T}{q} \ln\left(\frac{c_2}{c_1}\right)$$

Nernst

- Depends on the potential difference
- Requires selective ion channels

lons in a Cell

http://www.dev.urotoday.com