March 11, 2013

Physics 132

Prof. W. Losert

<u>Outline</u>

ScreeningCurrents

Office hours Thursday 12.30-2

Quiz 6

SCORE	1	2.1	2.2	2.3
5.7				
3.3				
Correct	all equal	А	D	В

Screening

Charged objects in Conducting Solids

- What happens if place a charged object into a neutral conductor?
 - Positive ions are fixed in the solid
 - Some negative charges (shared electrons) are free to move

Charged objects in Conducting Fluids

- What happens if place a charged object into a neutral fluid?
 - Opposite charged ions are attracted to object
 - Like charged ions are repelled
 - Thermal energy keeps ions moving

Debye length equations

- Charge imbedded in an ionic solution.
 - Ion charge = ze
 - Concentration = c_0
 - Temperature = T
 - Dielectric constant = κ
- The ion cloud cuts off the potential

 $V(r) = \frac{k_C Q}{k_r} e^{-r/t_D}$

6

Foothold ideas: Electric charges in materials

- Electroneutrality opposite charges in materials attract each other strongly. Pulling them apart to create a charge unbalance costs energy.
- If a charged object is placed in an ionic solution, it tends to draw up ions of the opposite type and push away ones of the same type.
 - Result: the charge is **shielded**. As you get farther away from it the "apparent charge" gets less.
 - The scale over which this happens is called the **Debye length**, λ_{D} .

Electric currents

Electric circuit elements

<u>Batteries</u> — devices that maintain a constant electrical potential difference across their terminals

 <u>Wires</u> — charges flow quickly need very little forces to move

 <u>Resistances</u> — charges need a larger force to move. Examples are Resistors and Lightbulbs

■ Suppose we:

- Close A for a few seconds
- Open A
- Close B
- What happens to the bulb?
 - 1. It stays off.
 - 2. It stays on after you close A
 - 3. It stays on after you close B
 - 4. It flashes when you close A
 - 5. It flashes when you open A
 - 6. It flashes when you close B

As the lightbulb flashes which of the following is true

- Positive charges move across the lightbulb, they move at roughly constant speed
- Positive charges move across the lightbulb, they move slowest at the lightbulb
- Negative charges move across the lightbulb, they move at roughly constant speed
- 4. **Negative** charges move across the lightbulb, they move slowest at the lightbulb
- 5. None of the above

Foothold ideas: Currents

- Charge is moving: How much?
- How does this relate to the individual charges?
- What pushes the charges through resistance? Electric force implies a drop in V!

I = q n A v

$$F_e = qE$$
$$\mathsf{D}V = -\frac{E}{L}$$

Ohm's Law

 Current proportional to change in Electrical Potential

 $\mathsf{D}V = IR$

- Does R depend on the Area of the resistor?
- Does R depend on the length of the resistor?
- 1. R Increases
- 2. R decreases
- 3. R remains the same
- 4. Depends on material

Resistivity and Conductance

- The resistance factor in Ohm's Law separates into a geometrical part (L/A) times a part independent of the size and shape but dependent on the material. This coefficient is called the *resistivity* of the material (ρ).
- Its reciprocal (g) is called conductivity. (The reciprocal of the resistance is called the conductance (G).)

$$R = \rho \frac{L}{A} = \frac{1}{g} \frac{L}{A} = \frac{1}{G}$$

Physics 132