Outline

- Screening

■ Currents

Office hours Thursday 12.30-2

Quiz 6

SCORE $1 \quad 2.12 .22 .3$ 5.7 3.3
 Correct all equal A D B

Screening

Charged objects in Conducting Solids

- What happens if place a charged object into a neutral conductor?
- Positive ions are fixed in the solid
- Some negative charges (shared electrons) are free to move

Charged objects in Conducting Fluids

- What happens if place a charged object into a neutral fluid?
- Opposite charged ions are attracted to object
- Like charged ions are repelled
- Thermal energy keeps ions moving

Debye length equations

- Charge imbedded in an ionic solution.
- Ion charge = ze
- Concentration $=c_{0}$
- Temperature = T
- Dielectric constant $=\kappa$

$$
D_{D}=\sqrt{\frac{k_{B} T}{8\left(\frac{k_{C} z^{2} e^{2}}{}\right) c_{0}}}=\sqrt{\frac{k_{B} T}{2\left(\frac{z^{2} e^{2}}{0}\right) c_{0}}}
$$

- The ion cloud cuts off the potential

$$
V(r)=\frac{k_{C} Q}{r} e^{r / D}
$$

Foothold ideas:

Electric charges in materials

- Electroneutrality - opposite charges in materials attract each other strongly. Pulling them apart to create a charge unbalance costs energy.
- If a charged object is placed in an ionic solution, it tends to draw up ions of the opposite type and push away ones of the same type.
- Result: the charge is shielded. As you get farther away from it the "apparent charge" gets less.
- The scale over which this happens is called the Debye length, $\boldsymbol{\lambda}_{\mathrm{D}}$.

Electric currents

Electric circuitelenents

- Batteries - devices that maintain a constant electrical potential difference across their terminals

- Wires - charges flow quickly need very little forces to move
- Resistances - charges need a larger force to move. Examples are Resistors
 and Lightbulbs
- Suppose we:
- Close A for a few seconds
- Open A
- Close B
- What happens to the bulb?
- 1. It stays off.
- 2. It stays on after you close A
- 3. It stays on after you close B
- 4. It flashes when you close A
- 5. It flashes when you open A
- 6. It flashes when you close B

As the lightbulb flashes which of the following is true

1. Positive charges move across the lightbulb, they move at roughly constant speed
2. Positive charges move across the lightbulb, they move slowest at the lightbulb
3. Negative charges move across the lightbulb, they move at roughly constant speed
4. Negative charges move across the lightbulb, they move slowest at the lightbulb
5. None of the above

Foothold ideas:

Currents

- Charge is moving: How much?

$$
I=\frac{q}{t}
$$

- How does this relate to the individual charges?

$$
I=q n A v
$$

- What pushes the charges through resistance? Electric force implies a drop in V !

$$
\begin{aligned}
F_{e} & =q E \\
V & =\frac{E}{L}
\end{aligned}
$$

Ohm' s Law

- Current proportional to change in Electrical Potential

$$
V=I R
$$

- Does R depend on the Area of the resistor?
- Does R depend on the length of the resistor?

1. R Increases
2. R decreases
3. R remains the same
4. Depends on material

Resistivity and Conductance

- The resistance factor in Ohm' s Law separates into a geometrical part (L / A) times a part independent of the size and shape but dependent on the material. This coefficient is called the resistivity of the material (ρ).
- Its reciprocal (g) is called conductivity. (The reciprocal of the resistance is called the conductance (G).)

$$
R=\rho \frac{L}{A}=\frac{1}{g} \frac{L}{A}=\frac{1}{G}
$$

