February 27, 2013

Physics 132

Prof. W. Losert

<u>Outline</u>

Capacitors

Makeup Exam TODAY 3pm-4pm Rm 1305 Physics

Two sheets of charge

Capacitor Equations $\mathsf{D}V = E\mathsf{D}x = Ed$ $E = 4\rho k_C S = 4\rho k_C \frac{Q}{A} \implies Q = \left(\frac{A}{4\rho k_C}\right) E$ $Q = \left(\frac{A}{4\mathcal{D}k_{c}d}\right)\mathsf{D}V$ $4\pi k_c$ is often written as "1/ ε_0 "

Some basic electrical ideas

- Conductor a material that permits some of its charges to move freely within it.
- Insulator a material that permits some of its charges to move a little, but not freely.
- **Battery** a device that creates and maintains a constant potential difference across its terminals. $\Delta V = V_0$ volt

Charging a capacitor

What is

the potential difference between the plates?

- What is the field around the plates?
- How much charge is on each plate?

The charges on the capacitor plates are Q_1 and $Q_2 \qquad Q_1$

- 1. Q₁ equals Q2
- 2. Q₁ equals -Q₂
- 3. The can have different magnitude but need to have opposite signs
- The can have different magnitude but need to have the same signs
- 5. None of the above
- 6. Depends on the situation

Why are the charges the same magnitude and opposite sign?

What would happen to the voltage if you first disconnected the battery and pulled the plates further apart

- 1. The potential difference would increase
- 2. The potential difference would decrease
- The potential difference would stay the same
- 4. Not enough information

What would happen to the voltage if I keep it connected to the battery and pulled the plates further apart

- 1. The potential difference would increase
- 2. The potential difference would decrease
- The potential difference would stay the same
- 4. Not enough information

What would happen to the voltage if I keep it connected to the battery and pulled the plates further apart

- 1. The charges on the plate would increase
- 2. The charges on the plate would decrease
- 3. The charges on the plate would stay the same
- 4. Not enough information

Cap #1 is charged by connecting it to a battery. #2 is not charged.

- C#1 is disconnected from the battery
- and connected to C#2.

How does the magnitude of the E field in C#1 change?

- 1. Same
- 2. Bigger by ~X2
- 3. Bigger but not by ~X2
- 4. Smaller by ~X2
- 5. Smaller but not by $\sim X2$
- 6. Can't tell

