- Review Materials Midterm 1
- Intro Materials
- Thermodynamics
- Electrostatic Charges

Intro Material

Foothold principles: Newton' s Laws

- Newton 0:
- An object responds only to the forces it feels and only at the instant it feels them.
- Newton 1:
- An object that feels a net force of 0 keeps moving with the same velocity (which may $=0$).
- Newton 2:
- An object that is acted upon by other objects changes its velocity according to the rule

$$
\vec{a}_{A}=\vec{F}_{A}^{n e t} / m_{A}
$$

- Newton 3:
- When two objects interact the forces they exert on each other are equal and opposite.

$$
\vec{F}_{A \rightarrow B}^{t y p e}=\vec{F}_{B \rightarrow A}^{t y p e}
$$

Foothold ideas:

Kinetic Energy and Work

- Newton's laws tell us how velocity changes. The Work-Energy theorem tells us how speed (independent of direction) changes.
- Kinetic energy $=\frac{1}{2} m v^{2}$
- Work done by a force $=F_{x} x$ or $F_{\|} r$ (part of force $\|$ to displacement)
- Work-energy theorem:

$$
\begin{array}{cc}
\left(\frac{1}{2} m v^{2}\right)=F_{\|}^{n e t} \quad r & (\text { small step }) \\
\left(\frac{1}{2} m v^{2}\right)=\int_{i}^{f} F_{\|}^{n e t} d r & (\text { any size step }) \\
\text { Physics } 132
\end{array}
$$

Foothold ideas: Potential Energy

- The work done by some forces only depends on the change in position. Then it can be written

$$
\vec{F} \cdot \quad \vec{r}=
$$

- For gravity, $U_{g r a v i t y}=m g h$

For a spring, $\quad U_{\text {spring }}=1 / 2 k x^{2}$
For electric force, $\quad U_{\text {electric }}=k_{C} Q_{1} Q_{2} / r_{12}$

- Potential to force: $\vec{F}=\frac{U}{\vec{r}}=\left(\frac{\partial U}{\partial x} \hat{i}+\frac{\partial U}{\partial y} \hat{j}+\frac{\partial U}{\partial z} \hat{k}\right)=\vec{\nabla} U$

The force associated with a PE at a given place points "downhill" - in the direction where the PE falls the fastest.

Foothold ideas: Random walk in 1D

- In random motion, the distribution Distribution of Distances of distances moved in a time Δt is predicable. This phenomenon is called diffusion
- The square of the average distance traveled during random motion will grow with time:

$$
\left\langle(\Delta x)^{2}\right\rangle=2 D \Delta t
$$

- D is called the diffusion constant and has dimensionality $[D]=L^{2} / \top$

Distance Travelled

Thermodynamics

Foothold ideas: Energy

- Kinds of energy
- Kinetic
- Potential
- Thermal
- Chemical
- First law of thermodynamics
- Conservation of total energy

Energy of System
 Thermal energy
 Entering system
 Work done on system
 $$
\Delta E=Q+W
$$

Foothold ideas: Enthalpy

Internal Energy

Foothold ideas:

Inter-atomic potentials

- The interaction between neutral atoms includes an attraction that arises from the fluctuating charge distribution in each atom; the PE behaves like $1 / r^{6}$.
- When the atoms are pressed close, they repel each other strongly
- Two commonly used models are:
- The Lennard-Jones potential ($\left.\mathrm{A} / r^{12}-\mathrm{B} / r^{6}\right)_{v}$
- The Morse potential (exponentials)

Foothold ideas:

Microstate and macrostates

- A microstate is a specific distribution of energy telling how much is in each DoF.
- A macrostate is a statement about some average properties of a state (pressure, temperature, density,...).
- A given macrostate corresponds to many microstates.
- If the system is sufficiently random, each microstate is equally probable. As a result, the probability of seeing a given macrostate depends on how many microstates it corresponds to.

Foothold ideas:

Thermal Equilibrium \& Equipartition

- Degrees of freedom are "bins" where internal energy resides in a system.
- Equipartition - In equilibrium, the same average energy in each Degree of Freedom (bin).
- Thermodynamic equilibrium is dynamic Energy moves from bin to bin, changes keep happening in each bin but cancel out.

Foothold ideas: Entropy

- Entropy - an extensive measure of how well energy is spread in a system.
- Entropy measures
- The number of microstates

$$
S=k_{B} \ln (W)
$$

- The amount that the energy of a system is spread among the various degrees of freedom
- Change in entropy upon heat flow

$$
S=\frac{Q}{T}
$$

Foothold ideas:

The Second Law of Thermodynamics

- Systems spontaneously move toward the thermodynamic (macro)state that correspond to the largest possible number of particle arrangements (microstates).
- The $2^{\text {nd }}$ law is probabilistic. Systems show fluctuations violations that get proportionately smaller as N gets large.
- Systems that are not in thermodynamic equilibrium will spontaneously transform so as to increase the entropy.
- The entropy of any particular system can decrease as long as the entropy of the rest of the universe increases more.
- The universe tends towards states of increasing chaos and uniformity. (Is this contradictory?)

Foothold ideas:

Transforming energy

- Internal energy: thermal plus chemical
- Enthalpy:

$$
H=U+p V
$$

internal plus amount needed to make space at constant p

- Gibbs free energy:

$$
G=H \quad T S
$$

enthalpy minus amount associated with raising entropy of the rest of the universe due to energy dumped

- A process will go spontaneously if $\Delta G<0$.

Foothold ideas:

Energy changes in a process

- Internal energy: thermal and chemical
- Enthalpy:

$$
H=U+p V
$$ internal plus amount needed to make space at constant p

- Gibbs free energy:

$$
G=H \quad T S
$$

enthalpy minus amount associated with raising entropy of the rest of the universe due to energy dumped

- A process will go spontaneously if $\Delta G<0$.

Foothold ideas:

Exponents and logarithms

- Power law: $f(x)=x^{2} \quad g(x)=A x^{7}$ a variable raised to a fixed power.
- Exponential: $f(x)=e^{x} \quad g(N)=2^{N} \quad h(z)=10^{z}$ a fixed constant raised to a variable power.
- Logarithm: the inverse of the exponential.
$\log \left(e^{x}\right)=x$

$$
\begin{aligned}
& \log \left(e^{x} e^{y}\right)=\log \left(e^{x}\right)+\log \left(e^{y}\right)=x+y \\
& \log (x y)=\log (x)+\log (y)
\end{aligned}
$$

Logs convert multiplying to adding!

Foothold ideas:

Energy distribution

- Due to the randomness of thermal collisions, eve in (local) thermal equilibrium a range of energy is found in each degree of freedom.
- The probability of finding an energy E is proportional to the Boltzmann factor

$$
\begin{aligned}
& P(E) \mu e^{E / k_{B} T}(\text { for one DoF) } \\
& P(E) \mu e^{E / R T}(\text { for one mole })
\end{aligned}
$$

- At 300 K,

$$
\begin{gathered}
k_{\mathrm{B}} T \sim 1 / 40 \mathrm{eV} \\
N_{\mathrm{A}} k_{\mathrm{B}} T=R T \sim 2.4 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

Electric Charges

Model: Charge A hidden property of matter

- Matter is made up of two kinds of electric charges (positive and negative) that have equal magnitude and that cancel when they are together and hide matter' s electrical nature.
- Like charges repel, unlike charges attract.
- The net charge (postive minus negative charges) is a constant
- Matter with an equal balance is called neutral.

Can Charges Move?

- Insulators
- Charges are bound and cannot move around freely.
- Excess charge tends to just sit there.
- Conductors
- Charges can move around throughout the object.
- Excess charge redistributes itself or flows off
- Solid: Electrons move
- Fluid: Charged atoms move
- Unbalanced charges attract neutral matter (polarization)

Foothold idea: Coulomb's Law

- All objects attract or repel each other with a force whose magnitude is given by

$$
\begin{aligned}
& \vec{F}_{q \rightarrow Q}=\frac{k_{C} q Q}{r_{q Q}^{2}} \hat{r}_{q \rightarrow Q} \\
& k_{C}=9 \quad 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}
\end{aligned}
$$

22

Foothold ideas:

Energies between charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is

$$
U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}}
$$

No vectors!

- The potential energy between many charges is

$$
U_{12 \ldots N}^{\text {elec }}={ }_{i<j=1}^{N} \frac{k_{c} Q_{i} Q_{j}}{r_{i j}}
$$

Just add up
all pairs!

Foothold idea:

Electric Forces and Fields

When we focus our attention on the electric force on a particular object with charge q_{0} (a "test charge") we see the force it feels depends on q_{0}.
Define quantity that does not depend on charge of test object "test" charge -> Electric Field E

$$
\begin{gathered}
\vec{F}_{q_{0}}^{E n e t}=\frac{k_{C} q_{0} q_{1}}{r_{01}^{2}} \hat{r}_{1 \rightarrow 0}+\frac{k_{C} q_{0} q_{2}}{r_{02}^{2}} \hat{r}_{2 \rightarrow 0}+\frac{k_{C} q_{0} q_{3}}{r_{03}^{2}} \hat{r}_{3 \rightarrow 0}+\ldots \frac{k_{C} q_{0} q_{N}}{r_{0 N}^{2}} \hat{r}_{N \rightarrow 0} \\
\vec{F}_{q_{0}}^{\text {Enet }}=q_{0} \vec{E}\left(\vec{r}_{0}\right) \\
\vec{E}\left(\vec{r}_{0}\right)=\frac{k_{C} q_{1}}{r_{01}^{2}} \hat{r}_{1 \rightarrow 0}+\frac{k_{C} q_{2}}{r_{02}^{2}} \hat{r}_{2 \rightarrow 0}+\frac{k_{C} q_{3}}{r_{03}^{2}} \hat{r}_{3 \rightarrow 0}+\ldots \frac{k_{C} q_{N}}{r_{0 N}^{2}} \hat{r}_{N \rightarrow 0}
\end{gathered}
$$

E is defined everywhere in space not just in places where charges are present

Foothold ideas:

Electrostatic Potential energy and Electrostatic Potential

- Again we focus our attention on a test charge!
- Usual definition of "electrostatic potential energy": How much does the energy of our system change if we add the test charge

It's really a change in potential energy!

$$
\longrightarrow U_{q_{0}}^{\text {elec }}\left(\vec{r}_{0}\right)=\frac{k_{C} q_{0} q_{1}}{r_{01}}+\frac{k_{C} q_{0} q_{2}}{r_{02}}+\ldots+\frac{k_{C} q_{0} q_{N}}{r_{0 N}}=\sum_{i=1}^{N} \frac{k_{C} q_{0} q_{i}}{r_{0 i}}
$$

- We ignore the electrostatic potential energies of all other pairs (since we assume the other charges do not move)
- We can pull the test charge magnitude out of the equation and obtain en electrostatic potential

$$
V\left(\vec{r}_{0}\right)=\frac{U_{q_{0}}^{\text {elec }}\left(\vec{r}_{0}\right)}{q_{0}}=\frac{k_{C} q_{1}}{r_{01}}+\frac{k_{C} q_{2}}{r_{02}}+\ldots+\frac{k_{C} q_{N}}{r_{0 N}}=\sum_{i=1}^{N} \frac{k_{C} q_{i}}{r_{0 i}}
$$

Forces and Fields

$$
\vec{F}_{q}=\sum_{i=1}^{N} \frac{k_{c} q Q_{i}}{r_{i q}^{2}} \hat{r}_{i q}
$$

$$
\vec{E}=\frac{\vec{F}_{q}}{q}
$$

Potential Energy and Potential

$$
\Delta U_{q}^{\text {elec }}=\sum_{i=1}^{N} \frac{k_{c} q Q_{i}}{r_{i q}}
$$

$$
V=\frac{\Delta U_{q}^{\text {elec }}}{q}
$$

Foothold idea:

Fields

- Test particle
- We pay attention to what force it feels.

We assume it does not have any affect on the source particles.

- Source particles
- We pay attention to the forces they exert and assume they do not move.
- Physical field
- We consider what force a test particle would feel if it were at a particular point in space and divide by its coupling strength to the force. This gives a vector at each point in space.

$$
\vec{g}=\frac{1}{m} \vec{W}_{E \rightarrow m} \quad \vec{E}=\frac{1}{q} \vec{F}_{\text {all charges } \rightarrow q} \quad V=\frac{1}{q} U_{\text {all charges } \rightarrow q}^{\text {elec }}
$$

Foothold ideas:

Capacitors
$V=E \quad x=E d$

$$
E=4 k_{C}=4 k_{C} \frac{Q}{A} \Rightarrow Q=\left(\frac{A}{4 k_{C}}\right) E
$$

$$
Q=\left(\frac{A}{4 k_{C} d}\right)
$$

$Q=C \quad V \quad$ " Q " stand for?
$C={ }_{4} A$ by a material

Energy stored $=\frac{1}{2} Q \quad V_{\text {Physis } 132}$

Units

- Gravitational field
units of $g=$ Newtons $/ \mathrm{kg}$
- Electric field

$$
\text { units of } E=\text { Newtons } / \mathrm{C}
$$

- Electric potential units of $V=$ Joules $/ \mathrm{C}=$ Volts
- Energy $=q V$ so $e \Delta V=$ the energy gained by an electron (charge $e=1.6 \times 10^{-19} \mathrm{C}$) in moving through a change of ΔV volts.
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

