Outline

- Electric Fields

- Electric Potential

Office hours next week:
Wed 5-6.30 office hours AV Williams Rm 3341
Thu 3-4pm Course Center

Foothold ideas:

Electric potential energy and potential

- The potential energy between two charges is
- The potential energy of many charges is

$$
\begin{gathered}
U_{12}^{\text {elec }}=\frac{k_{c} Q_{1} Q_{2}}{r_{12}} \\
U_{12 \ldots N}^{\text {elec }}={ }_{i<j=1}^{N} \frac{k_{C} Q_{i} Q_{j}}{r_{i j}}
\end{gathered}
$$

- The potential energy added by adding a test charge q is

$$
U_{q}^{\text {elec }}=\sum_{i=1}^{N} \frac{k_{C} q Q_{i}}{r_{i q}}=q V<\text { Potentials }
$$

Forces and Fields

$$
\vec{F}_{q}=\sum_{i=1}^{N} \frac{k_{c} q Q_{i}}{r_{i q}^{2}} \hat{r}_{i q}
$$

$$
\vec{E}=\frac{\vec{F}_{q}}{q}
$$

Potential Energy and Potential

$$
\Delta U_{q}^{\text {elec }}=\sum_{i=1}^{N} \frac{k_{C} q Q_{i}}{r_{i q}}
$$

$$
V=\frac{\Delta U_{q}^{\text {elec }}}{q}
$$

Negative test charge

Potential energy of a negative test charge near a positive source.

Electric Potential of a negative test charge near a positive source.

Two test charges are brought separately into the vicinity of a charge $+Q$. First, test charge $+q$ is brought to point A distance r from $+Q$.
Next, $+q$ is removed and a test charge $+2 q$ is brought to point B a distance $2 r$ from $+Q$.
Compared with the electrostatic potential of the charge at A, that of the charge at B is

1. greater
2. smaller
3. the same
4. you can' t tell from the information given

Two test charges are brought separately into the vicinity of a charge $+Q$. First, test charge $+q$ is brought to point A distance r from $+Q$.
Next, $+q$ is removed and a test charge $+2 q$ is brought to point B a distance $2 r$ from $+Q$.
Compared with the electrostatic potential energy of the charge at A, that of the charge at B is

1. greater
2. smaller
3. the same

4. you can' t tell from the information given

A positive charge might be placed at one of three spots in a region. It feels the same force (pointing to the left) in each of the spots.
How does the electric potential, $V_{\text {elec }}$, on the charge at positions 1,2 , and 3 compare?

1. $\quad V$ is greatest at 1
2. $\quad V$ is greatest at 2
3. V is greatest at 3
4. $\quad V$ is 0 at all 3 spots
5. $\quad V$ is $=$ at all 3 spots but not $=0$.

6. Not enough information

A massive object might be placed at one of three spots in a region where there is a uniform gravitational field. How do the gravitational potentials, $V=g h$, on the masses at positions 1, 2, and 3 compare?

1. $\quad V$ is greatest at 1
2. V is greatest at 2

3. V is greatest at 3
4. $\quad V$ is 0 at all 3 spots
5. V is $=$ at all 3 spots but not $=0$.

E field
令 $\Rightarrow \Rightarrow$ it

* $1 \Rightarrow \Rightarrow 1$
$\rightarrow \quad \rightarrow \quad \mid$ $\infty)^{+\rightarrow} \Rightarrow \theta^{\theta} \leqslant \infty$

Topography map = gravitational PE graph (2D)

 At which point is the force downhill strongest?1. A
2. B
3. C
4. None

Topography map = gravitational PE graph (2D)

At which point is the force downhill pointing to the east? (North is up)

1. A
2. B
3. C
4. None

