Outline

- Electric Fields

■ Electric Potential

Office hours this week:
THURSDAY 4.30-5.30pm Rm 0208 (Course Center)

Ave: 5.1

Quiz 3

Correct				Boltzmann
	CD	$\left(6^{*} 10^{\wedge}-4\right)(\mathrm{J} / \mathrm{K})$	B	Distribution/Equation/Factor
				P ~ $\mathrm{e}^{\wedge}(-E /(k T))$

$$
\begin{array}{r}
\Delta S=\frac{Q_{A}}{T_{A}}+\frac{Q_{B}}{T_{B}}=\frac{-0.5 \mathrm{~J}}{350 \mathrm{~K}}+\frac{0.5 \mathrm{~J}}{250 \mathrm{~K}}=0.0006 \mathrm{~J} / \mathrm{K} \\
P=\frac{e^{-\frac{E_{1}}{k T}}}{e^{-\frac{E_{0}}{k T}}}=e^{-\frac{\left(E_{1}-E_{0}\right)}{k T}}=e^{-\frac{0.015 \mathrm{eV}}{0.025 e V}}=e^{-0.6}=0.55
\end{array}
$$

Our model system:

 4 charges and a test charge q_{0}

Foothold idea:

Electric Forces and Fields

When we focus our attention on the electric force on a particular object with charge q_{0} (a "test charge") we see the force it feels depends on q_{0}.
Define quantity that does not depend on charge of test object "test" charge -> Electric Field E

$$
\begin{gathered}
\vec{F}_{q_{0}}^{\text {Enet }}=\frac{k_{C} q_{0} q_{1}}{r_{01}^{2}} \hat{r}_{1 \rightarrow 0}+\frac{k_{C} q_{0} q_{2}}{r_{02}^{2}} \hat{r}_{2 \rightarrow 0}+\frac{k_{C} q_{0} q_{3}}{r_{03}^{2}} \hat{r}_{3 \rightarrow 0}+\ldots \frac{k_{C} q_{0} q_{N}}{r_{0 N}^{2}} \hat{r}_{N \rightarrow 0} \\
\vec{F}_{q_{0}}^{\text {Enet }}=q_{0} \vec{E}\left(\vec{r}_{0}\right) \\
\vec{E}\left(\vec{r}_{0}\right)=\frac{k_{C} q_{1}}{r_{01}^{2}} \hat{r}_{1 \rightarrow 0}+\frac{k_{C} q_{2}}{r_{02}^{2}} \hat{r}_{2 \rightarrow 0}+\frac{k_{C} q_{3}}{r_{03}^{2}} \hat{r}_{3 \rightarrow 0}+\ldots \frac{k_{C} q_{N}}{r_{0 N}^{2}} \hat{r}_{N \rightarrow 0}
\end{gathered}
$$

E is defined everywhere in space not just in places where charges are present

Does the potential energy of the system change when I add a test charge?

Foothold ideas:

Electrostatic Potential energy and

 Electrostatic Potential■ Again we focus our attention on a test charge!
■ Usual definition of "electrostatic potential energy": How much does the energy of our system change if we add the test charge
$\begin{aligned} & \text { It's really a change } \\ & \text { in potential energy! }\end{aligned} U_{q_{0}}^{\text {elec }}\left(\vec{r}_{0}\right)=\frac{k_{C} q_{0} q_{1}}{r_{01}}+\frac{k_{C} q_{0} q_{2}}{r_{02}}+\ldots+\frac{k_{C} q_{0} q_{N}}{r_{0 N}}=\sum_{i=1}^{N} \frac{k_{C} q_{0} q_{i}}{r_{0 i}}$
■ We ignore the electrostatic potential energies of all other pairs (since we assume the other charges do not move)

- We can pull the test charge magnitude out of the equation and obtain en electrostatic potential

$$
V\left(\vec{r}_{0}\right)=\frac{U_{q_{0}}^{\text {elec }}\left(\vec{r}_{0}\right)}{q_{0}}=\frac{k_{C} q_{1}}{r_{01}}+\frac{k_{C} q_{2}}{r_{02}}+\ldots+\frac{k_{C} q_{N}}{r_{0 N}}=\sum_{i=1}^{N} \frac{k_{C} q_{i}}{r_{0 i}}
$$

Positive test charge with positive source

Potential energy

 of a positive test charge near a positive source.

Electric Potential of a positive test charge near a positive source.

What happens when I change the sign of the test charge

1. Potential energy graph changes
2. Electrostatic potential graph changes
3. Both change
4. Neither of the graphs changes
