Outline

- Review electric Forces

■ Review electric Potential

Office hours next week back to: WEDNESDAY 5-6.30pm Rm 0208 (Course Center)

- Electric charges are key to life!
- Phosphate group is charged and has electric field

Pastor Biophys J 2006

Model: Charge A hidden property of matter

- Matter is made up of two kinds of electric charges (positive and negative) that have equal magnitude and that cancel when they are together and hide matter' s electrical nature.
- Like charges repel, unlike charges attract.
- The net charge (postive minus negative charges) is a constant
- Matter with an equal balance is called neutral.

Can Charges Move?

- Insulators
- Charges are bound and cannot move around freely.
- Excess charge tends to just sit there.
- Conductors
- Charges can move around throughout the object.
- Excess charge redistributes itself or flows off
$>$ Solid: Electrons move
$>$ Fluid: Charged atoms move
- Unbalanced charges attract neutral matter (polarization)

$$
\begin{aligned}
& \vec{F}_{q \rightarrow Q}=\frac{k_{C} q Q}{r_{q Q}^{2}} \hat{r}_{q \rightarrow Q} \\
& k_{C}=9 \quad 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}
\end{aligned}
$$

What does \hat{r} mean?

1. Vector length 1, dimension length
2. Scalar length 1, dimension length
3. Vector length 1, dimensionless
4. Scalar length 1, dimensionless
5. Don't know

Questions: When two objects with the same sign of charge but different magnitudes are put together, they accelerate

1. with the same acceleration
2. With different acceleration -

Larger charge has higher acceleration
3. With different acceleration -

Smaller charge $=$ higher acceleration
4. Not enough information

Two small objects each with a net charge of Q (positive) exert a force of magnitude F on each other. We replace one of the objects with another whose net charge is $4 Q$. The original magnitude of the force on the Q charge was F; what is the magnitude of the force on the Q now?

$$
\begin{array}{ll}
\text { 1. } & 16 F \\
\text { 2. } & 4 F \\
\text { 3. } & F \\
\text { 4. } & F / 4
\end{array}
$$

5. other

40

What is the magnitude of the force on the $4 Q$ charge?

1. 16 F
2. 4 F
3. F
4. $F / 4$
5. other

In the figure are shown four arrangements of charge. Each charge has the same magnitude, but some are + and some are -. All distances are to the same scale. In which arrangement would the magnitude of the force felt by a positive test charge placed at P be the largest?

\author{

1. A
 2. B
 3. C
 4. D
 5. You can't tell.
}

$\mathbf{C} \oplus \oplus P \mathrm{P} \oplus$
$\mathbf{D} \oplus \mathrm{C}_{1} \mathrm{P} \quad \oplus$

Compare the magnitude and direction of the net force exerted on Q

B

1. Same direction
2. Same magnitude
3. Same direction and magnitude
4. Same magnitude, opposite direction
5. neither

A test charge (labeled q) is placed in a situation in which it feels the electrical force from three other charges (of opposite sign to it) labeled A, B, and C. (The charges are on a uniform grid as showin and the positions are to scale.) Which of the following combinations of forces has the greatest magnitude?

1. $\vec{F}_{A \rightarrow q}$
2. $\vec{F}_{B \rightarrow q}+\vec{F}_{C \rightarrow q}$

3. $\vec{F}_{A \rightarrow q}+\vec{F}_{B \rightarrow q}+\vec{F}_{C \rightarrow q}$
4. There is not enough information to tell.

Foothold ideas:

Energies between charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is

$$
U_{12}^{\text {elec }}=\frac{k_{C} Q_{1} Q_{2}}{r_{12}}
$$

No vectors!

See the system below. How do you calculate the electric potential energy of the system?

14

