An elastic string (modeled as a series of beads) driven by a wheel driving one of the beads up and down sinusoidally. The driving wheel has generated a traveling wave of amplitude 10 cm moving to the right. (The string continues on for a long way to the right as indicated by its going “out the window.”) The figure shows $t = 0$, when the green bead marked “II” is passing through its equilibrium point.

Which of the graphs could serve as the graph of the **vertical displacement of bead II as a function of time**?
An elastic string (modeled as a series of beads) driven by a wheel driving one of the beads up and down sinusoidally. The driving wheel has generated a traveling wave of amplitude 10 cm moving to the right. (The string continues on for a long way to the right as indicated by its going “out the window.”) The figure shows $t = 0$, when the green bead marked “II” is passing through its equilibrium point.

Which of the graphs could serve as a graph of the **vertical displacement of bead III** as a function of **time**?

- **A**
- **B**
- **C**
- **D**
An elastic string (modeled as a series of beads) driven by a wheel driving one of the beads up and down sinusoidally. The driving wheel has generated a traveling wave of amplitude 10 cm moving to the right. (The string continues on for a long way to the right as indicated by its going “out the window.”) The figure shows \(t = 0 \), when the green bead marked “II” is passing through its equilibrium point.

Which of the graphs could serve as a graph of the vertical displacement of the elastic string at the time \(t = 0 \) as a function of position?