Two test charges are brought separately into the vicinity of a charge $+Q$. First, test charge $+q$ is brought to point A a distance r from $+Q$.
Next, $+q$ is removed and a test charge $+2 q$ is brought to point B a distance $2 r$ from $+Q$.
Compared with the electrostatic potential of the charge at A, that of the charge at B is

1. greater
2. smaller
3. the same

4. you can't tell from the information given

Two test charges are brought separately into the vicinity of a charge $+Q$. First, test charge $+q$ is brought to point A a distance r from $+Q$.
Next, $+q$ is removed and a test charge $+2 q$ is brought to point B a distance $2 r$ from $+Q$.
Compared with the electrostatic potential energy of the charge at A , that of the charge at B is

1. greater
2. smaller
3. the same

4. you can't tell from the information given

A positive charge might be placed at one of three spots in a region where there is a uniform electric field.
How do the electric potential, V, on acharge at positions 1, 2, or 3 compare?

1. V is greatest at 1
2. V is greatest at 2
3. V is greatest at 3
4. V is 0 at all 3 spots
5. V is $=$ at all 3 spots but not $=0$.

A massive object might be placed at one of three spots in a region where there is a uniform gravitational field. How do the gravitational potentials, $V=g h$, on a mass at positions 1,2 , or 3 compare?

1. V is greatest at 1
2. V is greatest at 2

3. V is greatest at 3
4. V is 0 at all 3 spots
5. V is $=$ at all 3 spots but not $=0$.

Topo map = grav PE graph (2D)

At which point is the force downhill the strongest?

1. A
2. B
3. C

Topo map = grav PE graph (2D)

At which point is the force downhill pointing to the east?
(North is up)

1. A
2. B
3. C
4. None

Topo map = grav PE graph (2D)

At which point is the force downhill pointing to the north?
(North is up)

1. A
2. B
3. C
4. None

