Physics 131- Fundamentals of Physics for Biologists I

Professor: Arpita Upadhyaya arpitau@umd.edu www2.physics.umd.edu/~arpitau

An exercise on how your brain processes information

$>$ I will show you a slide with a list of color names
$>$ Each word will be printed in a colored ink.
$>$ Pair off in groups of twos.
$>$ One of each pair will be the reader, the other the checker
$>$ The reader will have 20 seconds to read out loud the colors that the words are printed in. $>$ The checker will count the number of words read, and the number correct.
RED GREEN ELUE YELLOW PINK
ORANGE BLUE reseen BLUE
WHITE
GREEN YELLOW ORANGE BLUE WHITE
BROWN RED BLUE YELLOW GREEN
PINK YELLOW GREEN BLUE

Checkers: how many colors did your partner name?

A. 0-5
B. 6-10
C. 11-15
D. 16-20
E. 21-25

Checkers: how many colors did your

 partner get right?A. 0-5
B. 6-10
C. 11-15
D. $16-20$
E. 21-25
RED GREEN ELUE YELLOW PINK
ORANGE BLUE reseen BLUE
WHITE
GREEN YELLOW ORANGE BLUE WHITE
BROWN RED BLUE YELLOW GREEN
PINK YELLOW GREEN BLUE

What did we learn from these exercises?

Our brains will connect what we see to what we know

You can take advantage of this in learning science!

- If you have prior knowledge, your brain will connect this prior knowledge when carrying out a task \rightarrow foothold principles
- Do not rely on the first recollection or intuition that comes to your mind. Active thinking is required!

NEW in the Course (1) Focus on Sense-making

NEW in the Course (2)
Physics Topics relevant to living systems

Do Newton's Laws always hold?

A. Yes
B. No
C. Umm...not sure

Is "Conservation of Energy" Always Right?

A. Yes
B. No
C. Umm...not sure

What is Physics?

Physics provides a framework for understanding basic principles of nature
e.g. motion, forces, light

Physics uses models and Math to describe basic principles of nature

Based on insights from models and math, physicists sometimes discover novel ways of controlling natural processes
$>$ Light \rightarrow lasers \rightarrow Modern microscopes
$>$ Electric charges \rightarrow transistors \rightarrow CPUs

Can Physics contribute to Biology and Medicine

A. Yes, a lot
B. No, not at all
C. Yes, but very little
D. Maybe, I am not sure
E. I expect to have a better answer after this course!

What can Physics contribute to Biology and Medicine?

- Whiteboards: write down your ideas!
- Groups of 3 - discuss topics
- Teaching Assistant and Learning Assistant will be in Lecture hall to participate in these discussions
- Pick one to talk about
- Discuss with another group of 3
- Share with Class

Some of your responses

> Better ways to model disease
> Diffusion across membrane
> Metastasis of cancer
> Bioengineering, Biotechnology
> Size shape of life
> Speed of reactions delivery of medication
> Optics
> Artificial sensory organs, Prosthetics
> Biomed technologies
> Fluids
> Understand physiology
> Fluids
> Light, visual perceptions
> Imaging technologies

How can Physics contribute to Biology and Medicine?

Experimental Tools for Cell Biology

- Super-resolution imaging (breaking the diffraction barrier)
- Optical traps and Magnetic traps to apply small forces

Experimental Tools for Diagnosis and Therapy

- MRI for high resolution imaging
- Proton therapy to eliminate diseased cells

Physics approaches: Quantitative Approaches to Complexity \& Information
 Physical principles: Forces and Motion

Experiments to change your life for: A serious role for theory in biology

- Often, biological data reports on functional relationships like those that are the lifeblood of physics.
- Data of this variety imposes much stricter demands on biological theory. No amount of words or cartoons suffice to describe such data.
- This approach allows us to see things that we can't see with words and cartoons alone (i.e. Darwin's sixth sense).

Genome Management Gene regulation

* How can we even know if these results are surprising?

Beyond the traditional approach

Biologists approach:

Look for the important molecules
Perturb them to find important interactions

Physicists approach:

Underlying physical mechanisms
Models or theories based on the physics of the system
Can go beyond molecular details and unearth generic principles

Cells in motion

Vorticella: $10 \mathrm{~cm} / \mathrm{s}$
Biological spring

Chemical energy converted to mechanical energy and movement

Cells change shape, cells exert forces, cells compute

How many times faster is the Vorticella ($10 \mathrm{~cm} / \mathrm{s}$) compared to the Neutrophil $(0.1 \mu \mathrm{~m} / \mathrm{s})$?

A. 10
B. 10^{2}
C. 10^{3}
D. 10^{4}
E. 10^{5}
F. 10^{6}
G. 10^{7}

Forces in Living Systems

Example: The role of forces in Cancer, or development of the embryo

Cells interact with their physical environment

Cell sheets from chick embryo (neural crest cells)

$80 \mu \mathrm{~m}$
6 h
Forces in living systems
Forces generated by cells
Forces between cells
Christy Ketchum, Shen Li, 2013
Upadhyaya lab, Taneyhill lab, UMD

What powers the cellular engine?

Immune cell (T cell)

Cancer cell
Molecular origin of forces: Actin dynamics + motors (a biopolymer)

Physics of Living Systems is DIFFERENT from the Physics taught in traditional Intro Courses

Example:

Forces and Motion on the scale of proteins

Blood Clotting Protein on Membrane, Molecular Dynamics Simulation Ohkubo \& Tajkhorshid, Structure 2008.

NEW in the Course: (2) Physics Topics relevant to living systems

Example: We will study random forces and motion. You will also learn how directed forces affect random motion.

Random
(Forces/Motion)
"Brownian Motion"
Directed
(Forces/Motion)
Fluid Flow
Electrical Forces

Knowing-how-you-know icon: Coherence - Your safety net

- We will be establishing fundamental principles that we can (almost) always trust as "stakes in the ground."
- The links among the different views
 creates a "safety net" that protects us against errors of recalled or reconstructed memory.
- We will use our coherence to "reconcile" what we know about the
 world with a coherent physics picture. 9/3/13

Topics

- Estimation
- Modeling the world
- Math in science
- Units and dimensions
- Scaling

Foothold Ideas:

Estimation - Quantifying experience

■ Measure your body parts

- Don't look up data online or get it from friends!

■ Don't use your calculator! Use 1-digit arithmetic
■ Do figure out your estimations by starting with something you can plausibly know and scale up or down

- Do check your answer to see if it's reasonable
$■$ Do learn a small number of Useful numbers

My personal scales

Useful numbers (people)

Numbers

Number of people on the earth
~ 7 billion $\left(7 \times 10^{9}\right)$

Number of people in the USA ~ 300 million $\left(3 \times 10^{8}\right)$

Number of people in the state of Maryland
~ 5 million (5×10^{6})

Number of students in a large state university
$\sim 30-40$ thousand (3×10^{4})

Useful numbers (distances)

Macro Distances
Circumference of the earth $\sim 24,000$ miles (1000 miles/time zone at the equator)
Radius of the earth* $\quad 2 / \pi \times 10^{7} \mathrm{~m}$
Distance across the USA
~3000 miles
Distance across DC
~ 10 miles

Useful numbers (bio)

Bio Scales

Size of a typical animal cell $\sim 10-20$ microns $\left(10^{-5} \mathrm{~m}\right)$

Size of a bacterium, chloroplast, or mitochondrion ~ 1 micron $\left(10^{-6} \mathrm{~m}\right)$

Size of a medium-sized virus $\quad \sim 0.1$ micron $\left(10^{-7} \mathrm{~m}\right)$

Thickness of a cell membrane $\sim 5-10 \mathrm{~nm}\left(10^{-8} \mathrm{~m}\right)$

Length scales - powers of ten

Relative Sizes and Detection Devices

Figure 1

Guess the thickness of a page in a textbook. (Quickly! No talking!)
A. $10^{-0} \mathrm{~m}$
B. $10^{-1} \mathrm{~m}$
C. $10^{-2} \mathrm{~m}$
D. $10^{-3} \mathrm{~m}$
E. $10^{-4} \mathrm{~m}$
F. $10^{-5} \mathrm{~m}$
G. $10^{-6} \mathrm{~m}$
H. $\quad 10^{-7} \mathrm{~m}$
I. $\quad 10^{-8} \mathrm{~m}$
J. $10^{-9} \mathrm{~m}$

Estimate the thickness of
a page in a textbook. (Take your time - talk to your neighbors)

A. $10^{-0} \mathrm{~m}$
B. $10^{-1} \mathrm{~m}$
C. $10^{-2} \mathrm{~m}$
D. $10^{-3} \mathrm{~m}$
E. $10^{-4} \mathrm{~m}$
F. $10^{-5} \mathrm{~m}$
G. $10^{-6} \mathrm{~m}$
H. $10^{-7} \mathrm{~m}$
I. $\quad 10^{-8} \mathrm{~m}$
J. $10^{-9} \mathrm{~m}$

