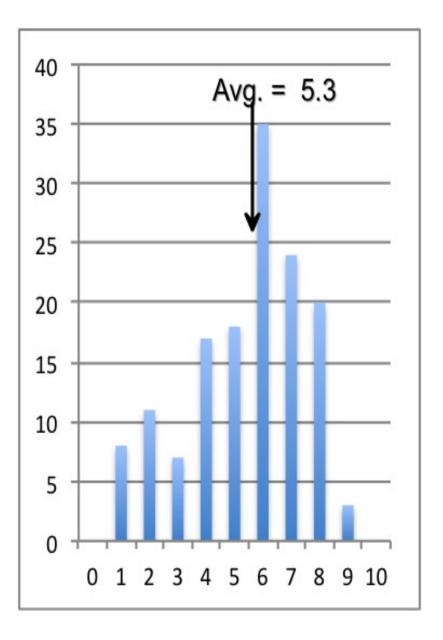

- Theme Music:
 Pearl Jam

 Even Flow
- <u>Cartoon:</u>
 Randall Munroe

 xkcd

The Equation of the Day


The Hagen-Poiseuille Equation

$$\Delta p = \left(\frac{8\mu L}{\pi R^4}\right)Q$$

Quiz 8

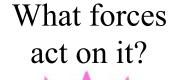
	1		2
M/T^2	76%	γ/Δρ	38%
ML/T^2	2%	γΔρ	6%
M/LT	1%	Δρ/γ	41%
MT/L^2	1%	Sqrt(γ/Δp)	2%

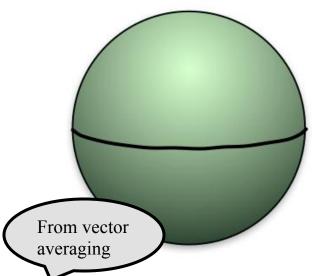
	3		4
a>b>c>d	25%	а	2%
d>c>b>a	23%	b	54%
a=b=c=d	20%	С	25%
b=c=d>a	1%	d	9%
a>c>b>d	2%	е	1%
c>b>a>d	8%	f	9%
b=c>a>d	1%		
a>b=c>d	8%		

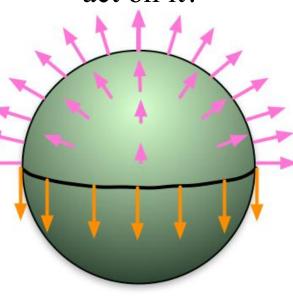
Foothold ideas: Surface tension

- Due to the intermolecular interactions holding a liquid together, the surface of a liquid experiences a tension.
- The pull across any line in the surface of the liquid is proportional to the length of the line.

$$F_{\text{surface tension}} = \gamma L$$


A bursting water balloon


Laplace Bubble Law


Consider a bubble

Now consider its top half

 $F_{\text{air pressure inside} \to \text{top half}}^{\uparrow} = \frac{1}{2} pA = \frac{1}{2} p(2\pi r^2) = \pi pr^2$

$$F_{\text{s.t. of bot half} \to \text{top half}}^{\downarrow} = \gamma L = \gamma (2\pi r) = 2\pi \gamma r$$

$$p = \frac{2\gamma}{r}$$
SMALLER bubble has bigger pressure!


Force from pressure inside (up) must cancel pull of surface tension from the bottom half (down)

8

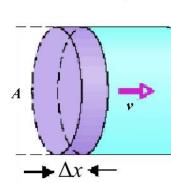
11/6/15

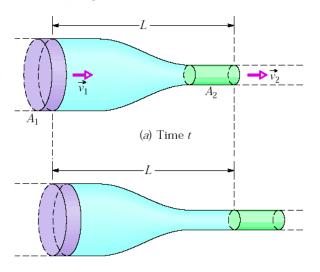
Foothold ideas:

Matter Current (incompressible)

$$[Q] = m^3/s$$

$$\vec{Q} = \frac{\left(A\Delta\vec{x}\right)}{\Delta t} = \frac{\left(A\vec{v}\Delta t\right)}{\Delta t} = A\vec{v}$$




"What goes in must come out."

$$\Delta V_{in} = \Delta V_{out}$$

$$A_1(v_1 \Delta t) = A_2(v_2 \Delta t)$$

$$Q = Av = constant$$

(b) Time $t + \Delta t$

Physics 131

11/4/15

Remember: Viscous Drag

- A fluid flowing in a pipe doesn't slip through the pipe frictionlessly.
- The fluid sticks to the walls moves faster at the middle of the pipe than at the edges.

 As a result, it has to "slide over itself" (shear).
- There is friction between layers of fluid moving at different speeds that creates a viscous drag force, trying to reduce the sliding.
- The drag is proportional to the speed and the length of pipe. $F_{drag} = 8\pi\mu Lv$