Theme Music: Willie Nelson

 The Gambler Cartoon: Randall Munroexkcd

H HYDROGEN CAN FORM FOUR BONDS. IT READILY BONDS HHHH WITH ITSELF, AND OFTEN EXISTS AS A CRYSTAL. HHHH
HHHH
CRYSTCLUNE
HOROCEN
C CARBON CAN ONLY FORM TWO BONDS. IT READIIY BONDS WITH HYDROGEN TO FORM C2H (MYDRANE) OR ITSELF.

TYPOGRAPHIC CHEMISTRY

The Equation of the Day

Foothold principles: Randomness

■ Matter is made of of molecules in constant motion and interaction. This motion moves stuff around.
■ If the distribution of a chemical is non-uniform, the randomness of molecular motion will tend to result in molecules moving from more dense regions to less.
\square This is not directed but is an emergent phenomenon arising from the combination of random motion and non-uniform concentration.

A new start

■ Our mathematical model based on identifying position, velocity, and all the forces on an object and then calculating the motion using Newton's second law is too hard for a small particle being hit by many molecules.

- An alternative starting point is to describe the result of all the forces acting on a small object as random motion.
- Average phenomena that emerge from the randomness can still be reliable even though the motion at any given instant can't be predicted.

Foothold principles: Fick's first Law

- If a set of molecules is not distributed uniformly in 1 D (there is a concentration gradient) there will be an effective flow of those molecules according to
(or in 3D) $\quad \vec{J}=-D \vec{\nabla}_{n}$

$$
J=-D \frac{d n}{d x}
$$

■ In a gas, the diffusion constant D is given by $\frac{1}{2 \sqrt{3}} \lambda \bar{v}$
■ In a liquid, the diffusion constant is given by $D=\frac{k_{B} T}{6 \pi \mu R}$

Foothold principles: Fick's second Law

■ The average square displacement of a random walking molecule in a thermal bath after a time t is given in 3D by Fick's second law:

$$
\left\langle\Delta r^{2}\right\rangle=\left\langle\Delta x^{2}\right\rangle+\left\langle\Delta y^{2}\right\rangle+\left\langle\Delta z^{2}\right\rangle=6 D \Delta t
$$

- The radius of a small blob of chemical in a liquid will grow at this rate.
■ The displacement, $\Delta r=\sqrt{\left\langle\Delta r^{2}\right\rangle}$, only grows like $\sqrt{\Delta t}$ For larger organisms, this is too slow and is the reason transport systems for air and blood have evolved.

2D Simulations:
 Multiple representations

2D Simulations:
 Multiple representations

1. Watch all the particles.
2. Look at the density of the particles

- What do the colors represent?

3. Look at a plot of the density along a slice through the middle.

- What it will look like and what it will do.

4. Look at the motion of individual particles.
