September 11, 2015
Physics 131 Prof. E. F. Redish HERMAN ${ }^{\circ}$

- Theme Music: Elton John Rocket Man

Cartoon: Jim Unger Herman

"How could I have been doing 70 miles an hour when l've only been driving for ten minutes?"

The Equation of the Day

Average and
instantaneous
velocity

$$
\begin{aligned}
\langle v\rangle & =\frac{\Delta x}{\Delta t} \\
v & =\frac{d x}{d t}
\end{aligned}
$$

Quiz 1

Physics 131

Quiz 1

4

Graphing Position

- Graphs for the eye vs. graphs for the mind.
- Describe where something is in terms of its coordinate at a given time.
- Choose origin
- Choose axes
- Choose scale
- Set scales on graph
- Take data from video
- Construct different graphs
- Fit the graphs with math functions

The sonic ranger (motion detector)

- The sonic ranger measures distance to the nearest object by echolocation.
- A speaker clicks 30 times a second.

A microphone detects the sound bouncing back from the nearest object in front of it.

- The computer calculates the time delay between and using the speed of sound (about $343 \mathrm{~m} / \mathrm{s}$ at room temperature) it can calculate the distance to the object.

Foothold ideas: 1D Velocity

- Velocity is the rate of change of position
- Average velocity
$=$ (how far did you go?)/(how long did it take you?)

$$
\langle v\rangle=\frac{\Delta x}{\Delta t}
$$

■ Instantaneous velocity = same
(but for short Δt)

$$
v=\frac{d x}{d t}
$$

Can this velocity be negative as well as positive?

Foothold ideas: Velocity

- Average velocity is defined by

$$
\langle\vec{v}\rangle=\frac{\Delta \vec{r}}{\Delta t}=\frac{\text { vector displacement }}{\text { time it took to do it }}
$$

Note: an average velocity goes with a time interval.

- Instantaneous velocity is what we get when we consider a very small time interval (compared to times we care about)

$$
\vec{v}=\frac{d \vec{r}}{d t}
$$

Note: an instantaneous velocity goes with a specific time.

Knowing-how-to-know icon: Multiple Representations

- We have many different ways that we represent information:
- Words
- Equations
- Diagrams
- Pictures

- Each gives its own way of building up something "real" in our minds.

Knowing-how-to-know icon: Coherence - Your safety net

- Throughout the class we will be looking to see physical situations in a variety of different ways.
- The consistency among the
 different views protects us against errors of reconstructed memory.

Position to velocity

Ratio of change in

$$
v(t)=\frac{d x}{d t} \quad \longleftarrow \quad \begin{aligned}
& \text { position that takes } \\
& \text { place to the (small) } \\
& \text { time interval }
\end{aligned}
$$

Difference of two positions at two (close) times

$$
\rightarrow v(t)=\frac{x(t+\Delta t / 2)-x(t-\Delta t / 2)}{\text { Physics 131 } \Delta t}
$$

Velocity to position

$\mathbf{d x} \underset{\mathrm{dt}}{\mathbf{t} \boldsymbol{(m)}}$

$$
d x=v(t) d t \stackrel{\text { change in posit }}{\rightleftarrows} \text { takes place in }
$$

a small time interval
sum (" Σ ") in the
changes in position over many small time intervals

What have we learned?

Representations and consistency

- Visualizing where an object is $\quad \rightarrow \quad$ a position graph at different times
- Visualizing how fast an object is moving \rightarrow a velocity graph at different times
- Position graph
\rightarrow velocity graph

$$
\text { slopes } \quad\langle v\rangle=\frac{\Delta x}{\Delta t} \quad v=\frac{d x}{d t}
$$

- Velocity graph \rightarrow position graph

$$
\text { areas } \quad \Delta x=v \Delta t \quad \Delta x=\int v d t
$$

Graphing Velocity:
 Figuring it out from the motion

- An object in uniform motion has constant velocity.
- This means the instantaneous velocity does not change with time. Its graph is a horizontal line.
- You can make sense of this by putting your mind in "velocity mode" and running a mental movie.

