■ Theme Music: The Outlaws of Physics Walk Don't Run

■ Cartoon:

Charles Schultz *Peanuts*

The Equation of the Day

Functions

x(t)

9/4/15

Cat television

- When we do science, we don't try to solve the entire universe at once.
- We restrict our considerations to a limited set of data and try to understand it.
 Only when we get it do we try to expand further to more situations.
- This is like looking out a window onto a small segment of the world. Since cats like to do this, I call the process "choosing a channel on cat television."

The Main Question

(for this term, at least)

Start by choosing a big question and then refining it:

How do things move?

Why choose this?

- -concepts of measurement, rate of change, and force are basic set frame for what are appropriate terms to use to think about motion.
- -ties to everyday experience so can use and learn to build/refine intuition

1.c., they don't need any causes.

Reading questions

■ Can you give us an example of how a suppressed zero would magnify the variation in a curve?

Foothold ideas: Measuring "where"

- In order to specify where something is we need a coordinate system. This includes:
 - 1. Picking an origin
 - 2. Picking perpendicular directions
 - 3. Choosing a measurement scale
- Each point in space is specified by three numbers: (x, y, z), and a <u>position vector</u>— an arrow showing the displacement from the origin to that position.
- Vectors add like successive displacements or algebraically by $\vec{A} = A_x \hat{i} + A_y \hat{j}$ $\vec{B} = B_x \hat{i} + B_y \hat{j}$

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$$

9/9/15

Can position

be negative?

What would

that mean?

Notation

■ We specify the directions we are talking about by drawing two little arrows of unit length in two perpendicular directions.

- "x" and "y" are called the coordinates and can be positive or negative.
- Note that if x is negative, it means xi is a vector pointing in the direction opposite to \hat{i}

Foothold ideas: Measuring "when"

- Time is a coordinate just like position
 - We need an origin (when we choose t = 0)
 - a direction (usually times later than 0 are +)
 - a scale (seconds, years, millennia)
- Note the difference between
 - clock reading, t
 - a time interval, Δt

This is like the difference between position and length!