September 9, 2015
Physics 131 Prof. E. F. Redish

- Theme Music: The Outlaws of Physics Walk Don't Run
- Cartoon: Charles Schultz Peanuts

The Equation of the Day

Functions

$x(t)$

Cat television

- When we do science, we don't try to solve the entire universe at once.
■ We restrict our considerations to a limited set of data and try to understand it.
Only when we get it do we try to expand further to more situations.
- This is like looking out a window onto a small segment of the world. Since cats like to do this, I call the process "choosing a channel on cat television."

The Main Question (for this term, at least)

- Start by choosing a big question and then refining it:

How do things move?

Why choose this?
-concepts of measurement, rate of change, and force are basic - set frame for what are appropriate terms to use to think about motion.
-ties to everyday experience so can use and learn to build/refine intuition
r.c., incy avil cmuca anty causus.

Reading questions

- Can you give us an example of how a suppressed zero would magnify the variation in a curve?

Foothold ideas: Measuring "where"

- In order to specify where something is we need a coordinate system. This includes: Can position

1. Picking an origin
2. Picking perpendicular directions
3. Choosing a measurement scale
be negative? What would that mean?

- Each point in space is specified by three numbers: (x, y, z), and a position vector- an arrow showing the displacement from the origin to that position.
- Vectors add like successive displacements or algebraically by

$$
\begin{aligned}
& \vec{A}=A_{x} \hat{i}+A_{y} \hat{j} \quad \vec{B}=B_{x} \hat{i}+B_{y} \hat{j} \\
& \vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \hat{i}+\left(A_{y}+B_{y}\right) \hat{j}
\end{aligned}
$$

Notation

- We specify the directions we are talking about by drawing two little arrows of unit length in two perpendicular directions.
■ " x " and " y " are called the coordinates and can be positive or negative.
■ Note that if x is negative, it means $x \hat{i}$ is a vector pointing in the direction opposite to \hat{i}

Foothold ideas: Measuring "when"

- Time is a coordinate just like position
- We need an origin (when we choose $t=0$)
- a direction (usually times later than 0 are +)
- a scale (seconds, years, millennia)
- Note the difference between
- clock reading, t
- a time interval, Δt

This is like the difference between position and length!

