Critical Experiment 1

If we have equal amounts of the same kinds of materials at different temperatures and put them together, what happens?

A. pretty close to 50 C
B. pretty close to 80 C
C. pretty close to 20 C
D. greater than 80 C
E. less than 20 C

Real-World Intuition 2 How do objects exchange hot and cold?

■ When two amounts of water at different temperatures are combined, they come to a temperature somewhere in between.
\square We expect that the amount of each kind of water determines the final temperature.

- Try it!
- Case 1: Equal amounts of water
- Case 2: Different amounts of water

Critical Experiment 2

If we have unequal amounts of the same kinds of materials at different temperatures and put them together, what happens?

A. pretty close to 40 C
B. pretty close to 80 C
C. pretty close to 20 C
D. greater than 60 C
E. something else

Two Objects of the Same Kind but Different Temperatures

Implications

\square From the equation $m_{1} \Delta T_{1}=-m_{2} \Delta T_{2}$

- it looks like something is being transferred from the hot object to the cold object
- it looks like temperature is kind of
a "density of hotness." You have to multiply
by the mass to get the "amount of hotness" transferred.
■ We will call the thing being transferred "thermal energy."

What if we have different kinds of stuff?

■ What happens if we have equal masses of water and something else a copper cylinder, say?
$■$ What' s your intuition here?

- Will the temperature settle down to halfway between?
- Will it be closer to the water's temperature?
- Will it be closer to the copper's temperature?

■ Try it!

Critical Experiment 3

If we have equal masses of different kinds of materials at different temperatures and put them together, what happens?

A. pretty close to 50 C
B. pretty close to 80 C
C. pretty close to 20 C
D. greater than 80 C
E. less than 20 C

