What does the electric potential energy between two identical charges look like?

What does the electric potential energy between two opposite charges look like?

Two test charges are brought separately into the vicinity of a charge +Q. First, test charge +q is brought to point A a distance r from +Q.

Next, +q is removed and a test charge +2q is brought to point B a distance 2r from +Q.

Compared with the <u>electrostatic potential energy</u> of pair of charges in case A, the PE in case B is

- 1. greater
- 2. smaller
- 3. the same
- 4. you can't tell from the information given

- \bigcirc charge = +q
- \bigcirc charge = -q

- 1. A
- 2. B
- 3. C
- 4. D
- 5. A and C
- 6. B and D
- 7. other

- 1. It will <u>increase</u> because the test charge will move <u>towards</u> the source charge.
- 2. It will <u>decrease</u> because the test charge will move <u>away from</u> the source charge.
- 3. It will <u>increase</u> because the test charge will move <u>away from</u> the source charge.
- 4. It will decrease because the test charge will move towards the source charge.
- 5. It will remain constant because the test charge remains at rest.
- 6. There is not enough information to tell.

- 1. It will <u>increase</u> because the test charge will move <u>towards</u> the source charge.
- 2. It will <u>decrease</u> because the test charge will move <u>away from</u> the source charge.
- 3. It will <u>increase</u> because the test charge will move <u>away from</u> the source charge.
- 4. It will <u>decrease</u> because the test charge will move towards the source charge.
- 5. It will remain constant because the test charge remains at rest.
- 6. There is not enough information to tell.

How many interactions in the system have an electric potential energy? (Equivalently: How many "1/r" terms will we have to add up to get the total electric PE?)

How many of those potential energies change when the charge Q moves to the right?

Sketch a graph of the extra potential energy from adding Q as a function of position r of charge Q

11/30/15

16