■ The diffusion constant *D*, describes how molecules jiggling around in a fluid drift. It has dimensions

$$[D] = L^2/T$$

- We have good reason to believe (we'll see it in a reading later) that D depends on the average distance a molecules travels, λ , and it's average speed v.
- If $[\lambda] = L$ and $[\nu] = L/T$ guess an equation that expresses D in terms of λ and ν .

As part of an exam a few years ago, a student wrote the following derivation of a final result. Without knowing the problem, but knowing the dimensions of each quantity shown along the bottom can you determine:

Is equation D correct?

- 1. Yes
- 2. No
- 3. Can't tell

Given that equation D is NOT correct, can you tell which is the first line that has an error?

A.
$$Mgh = \frac{1}{2}Mv^2 + \frac{1}{2}I\omega^2$$

$$B. \quad Mgh = \frac{1}{2}Mv^2 + \frac{1}{2}(MR^2)\omega^2$$

C.
$$Mgh = \frac{1}{2}Mv^2 + \frac{1}{2}(MR^2)\left(\frac{v^2}{R}\right)^2$$

$$D. gh = \frac{1}{2}v^2 + \frac{1}{2}v^4$$

$$[M]=M$$
 $[g]=L/T^2$ $[h]=L$ $[\omega]=/T$ $[v]=L/T$ $[R]=L$ $[I]=ML^2$

Estimate the thickness of a page in a textbook. (Quickly! No talking!)

- 1. 10⁰ m
- 2. 10⁻¹ m
- 3. 10⁻² m
- 4. 10⁻³ m
- 5. 10⁻⁴ m

- 6. 10⁻⁵ m
- 7. 10⁻⁶ m
- 8. 10⁻⁷ m
- 9. 10⁻⁸ m

Estimate the thickness of a page in a textbook. Discuss with your neighbor before answering.

- 1. 10⁰ m
- 2. 10⁻¹ m
- 3. 10⁻² m
- 4. 10⁻³ m
- 5. 10⁻⁴ m

- 6. 10⁻⁵ m
- 7. 10⁻⁶ m
- 8. 10⁻⁷ m
- 9. 10⁻⁸ m