• Theme Music: Simon & Garfunkel

Homeward Bound

• Cartoon: S. Harris

Quiz 11

<table>
<thead>
<tr>
<th></th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0%</td>
<td>0%</td>
<td>30%</td>
<td>23%</td>
<td>3%</td>
</tr>
<tr>
<td>B</td>
<td>97%</td>
<td>91%</td>
<td>69%</td>
<td>72%</td>
<td>75%</td>
</tr>
<tr>
<td>C</td>
<td>3%</td>
<td>9%</td>
<td>1%</td>
<td>5%</td>
<td>23%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2.1</th>
<th>2.2</th>
<th>2.3</th>
<th>2.4</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12%</td>
<td>3%</td>
<td>13%</td>
<td>91%</td>
<td>4%</td>
</tr>
<tr>
<td>B</td>
<td>19%</td>
<td>80%</td>
<td>15%</td>
<td>2%</td>
<td>34%</td>
</tr>
<tr>
<td>C</td>
<td>54%</td>
<td>2%</td>
<td>22%</td>
<td>7%</td>
<td>55%</td>
</tr>
<tr>
<td>D</td>
<td>2%</td>
<td>14%</td>
<td>48%</td>
<td>1%</td>
<td>7%</td>
</tr>
<tr>
<td>E</td>
<td>14%</td>
<td>1%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Avg. = 7.3
Foothold ideas:
Energies between charge clusters

- Atoms and molecules are made up of charges.
- The potential energy between two charges is
 \[U_{12}^{\text{elec}} = \frac{k_e Q_1 Q_2}{r_{12}} \]
 No vectors!
- The potential energy between many charges is
 \[U_{12...N}^{\text{elec}} = \sum_{i<j=1}^{N} \frac{k_e Q_i Q_j}{r_{ij}} \]
 Just add up all pairs!

Moving to molecules

- Apply our Newtonian framework and results to atoms and molecules.
- See what goes over directly, what we have to add.
- Can we integrate what we know about atoms and molecules from chemistry with the physics we have learned?
Molecular forces

Sketch a graph of the extra potential energy from adding Q as a function of position r of charge Q

$$\Delta U = k_c Q \sum_{i=1}^{3} \frac{q_i}{r_{Q-q_i}} = k_c Q \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} \right)$$
What if we move in 2D instead of 1D?

Foothold ideas:
Forces from PE

- For conservative forces, PE can be defined by
 \[\vec{F} \cdot \Delta \vec{r} = -\Delta U \]

- If you know \(U \), the force can be gotten from it via
 \[F_{\text{type}} = -\frac{\Delta U_{\text{type}}}{\Delta r} = -\frac{dU_{\text{type}}}{dr} \]

- In more than 1D need to use the gradient
 \[\vec{F}_{\text{type}} = \left(\frac{\partial U_{\text{type}}}{\partial x} \hat{i} + \frac{\partial U_{\text{type}}}{\partial y} \hat{j} + \frac{\partial U_{\text{type}}}{\partial z} \hat{k} \right) = -\nabla U_{\text{type}} \]

- The force always points down the PE hill.
Foothold ideas:

Bound states

- When two objects attract, they may form a *bound state* – that is, they may stick together.

- If you have to do positive work to pull them apart in order to get to a separated state with KE = 0, then the original state was in a state with negative energy.