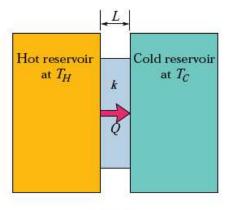


Real-World Intuition 1:

Reconsidered

- If we have a cup of hot water and a cup of cold water and we put them aside for a while, what will happen to them?

- If you touch the cloth part of your chair and the metal part, which feels warmer?

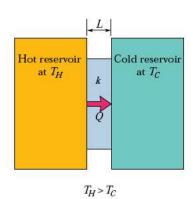


12/5/12 Physics 131

4

Heat Flow by Conduction

- Simplest case (again)
 - Hot block at $T_{\rm H}$
 - Cold block at $T_{\rm C}$
 - Connecting block that carries ("conducts") thermal energy from the hot block to the cold.



 $T_H > T_C$

12/5/12 Physics 131 **5**

Creating an equation

- Φ = Flow = heat energy/sec [Φ] = Joules/s = Watts
- What drives the flow?
- How does the rate of flow depend on the property of the connecting block?

6

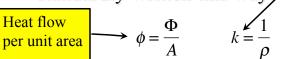
12/5/12 Physics 131

The Heat Flow Equation

$$\Delta T = Z\Phi$$

- We expect the flow to
 - Be less for a longer block (L)
 - − Be more for a wider block (A)

$$Z = \rho \frac{L}{A}$$


 $\rho =$ thermal resistivity – a property of the kind of substance the block is made of

12/5/12 Physics 131

A more standard form

■ We have written the heat flow equation to have it match the HP equation. It is more standardly written this way:

| Thermal | Thermal

■ The equation then becomes

12/5/12

$$\Delta T = Z\Phi = \frac{\rho L}{A}\Phi = \left(\frac{L}{k}\right)\left(\frac{\Phi}{A}\right)$$

$$\Delta T = R\phi$$
Physics 131 Thermal resistance (R-value)

conductance

8

Some thermal conductances

Material	k (W/m-C)	Material	k (W/m-C)
Steel	12-45	Wood	0.4
Aluminum	200	Insulation	0.04
Copper	380	Air	0.025
12/5/12	Physics 131		9