

Moving to molecules

- Apply our Newtonian framework and results to atoms and molecules.
- See what goes over directly, what we have to add.
- Can we integrate what we know about atoms and molecules from chemistry with the physics we have learned?

11/28/12 Physics 131 **4**

Foothold ideas: Bound states

6

- When two objects attract, they may form a *bound state* – that is, they may stick together.
- If you have to do positive work to pull them apart in order to get to a separated state with KE = 0, then the original state was in a state with negative energy.

11/30/12 Physics 131

Foothold ideas: Forces from PE

$$F_{\parallel}^{type} = -\frac{\Delta U_{type}}{\Delta r} = -\frac{dU_{type}}{dr}$$

■ In more than 1D need to use the *gradient*

$$\vec{F}^{type} = -\vec{\nabla} U_{type}$$

■ The force always points <u>down</u> the PE hill.

If we have a complicated potential energy – and a mass at rest in it – can we tell where it will go when released?

How do you know? What are the conditions under which this works?

/28/12 Physics 131

9