■ Theme Music: Simon & Garfunkel Homeward Bound

■ Cartoon: S. Harris

Quiz 9

		I	
	9.1	9.2	9.3
Α	31%	77%	38%
В	8%	15%	23%
С	31%	0%	8%
D	31%	8%	8%
E	38%		
Α	0%	0%	23%

0 1 2 3 4 5 6 7 8 9 10

11/28/12

Physics 131

Moving to molecules

- Apply our Newtonian framework and results to atoms and molecules.
- See what goes over directly, what we have to add.
- Can we integrate what we know about atoms and molecules from chemistry with the physics we have learned?

Molecular forces

http://besocratic.colorado.edu/CLUE-Chemistry/activities/ LondonDispersionForce/1.2-interactions-0.html

Foothold ideas: Bound states

- When two objects attract, they may form a *bound state* that is, they may stick together.
- If you have to do positive work to pull them apart in order to get to a separated state with KE = 0, then the original state was in a state with negative energy.

Foothold ideas: Forces from PE

■ For conservative forces, PE can be defined by

$$\vec{F} \cdot \Delta \vec{r} = -\Delta U$$

 \blacksquare If you know U, the force can be gotten from it via

$$F_{\parallel}^{type} = -\frac{\Delta U_{type}}{\Delta r} = -\frac{dU_{type}}{dr}$$

■ In more than 1D need to use the *gradient*

$$\vec{F}^{\rm type} = -\vec{\nabla} U_{\rm type}$$

■ The force always points <u>down</u> the PE hill.

If we have a complicated potential energy – and a mass at rest in it – can we tell where it will go when released?

How do you know? What are the conditions under which this works?