

Foothold ideas: Kinetic Energy and Work

- Newton's laws tell us how velocity changes
 The Work-Energy theorem tells us how
 speed (independent of direction) changes.
- Kinetic energy = $\frac{1}{2}mv^2$
- Work done by a force = $F_x \Delta x$ or $F_{\parallel} \Delta r$ (part of force \parallel to displacement)
- Work-energy theorem: $\Delta(\frac{1}{2}mv^2) = F_{\parallel}^{net} \Delta r$

11/21/12 Physics 131

Foothold ideas: Potential Energy

For some forces work only depends on the change in position. Then the work done can be written $\vec{F} \cdot \Delta \vec{r} = -\Delta U$

U is called a *potential energy*.

- For gravity, $U_{gravity} = mgh$
 - For a spring, $U_{spring} = \frac{1}{2} kx^2$

For electric force, $U_{electric} = k_C Q_1 Q_2 / r_{12}$

11/21/12 Physics 131 **5**

Conservative forces

- Forces (like gravity or springs) are conservative if when the force takes KE away, you can get it back when you go back to where you started.
- If the kinetic energy that a force takes away <u>can't</u> be restored by going back to where you started it is called non-conservative.
- Compare gravity and friction:

Non-conservative forces/situations

- Friction / drag
 - Three kinds of forces drain ME: friction (indep. of v), viscosity (prop. to v), drag (prop. to v^2)
- Breaking / crushing
 - Normal forces are typically springy and conservative.
 - If an object is deformed too much,
 the structure can change (break) and drain ME.
- Chemical reactions
 - Chemical structure is another kind of potential energy that can be stored. It can create or drain ME.

11/21/12 Physics 131

Dimensions and Units of Energy

- \blacksquare [1/2 mv^2] =M-(L/T) 2 = ML 2 /T 2
- 1 kg-m² /s² = 1 N-m = 1 Joule
- Other units of energy are common (and will be discussed later)
 - Calorie
 - eV (electron Volt)
 - $erg (=1 g-cm^2/s^2)$

11/21/12 Physics 131 **8**

Power

■ An interesting question about work and energy is the rate at which energy is changed or work is done. This is called *power*.

Power =
$$\frac{\text{Energy change}}{\text{time to make the change}}$$
$$= \frac{\Delta W}{\Delta t} = \vec{F}^{net} \cdot \frac{\Delta \vec{r}}{\Delta t} = \vec{F}^{net} \cdot \vec{v} \quad \text{(for mechanical work)}$$

■ Unit of power

$$1 \text{ Joule/sec} = 1 \text{ Watt}$$

11/21/12 Physics 131 **9**

Foothold ideas: Conservation laws

- The momentum of a system of objects is conserved IF the external forces acting on them cancel. $\Delta \left(\sum_{n=1}^{N} \vec{p}_{n}^{initial}\right) = 0$

$$\sum_{n=1}^{N} \vec{p}_n^{initial} = \sum_{n=1}^{N} \vec{p}_n^{final}$$

10

■ Mechanical energy

- The mechanical energy of a system of objects is conserved IF resistive forces can be ignored.

$$\begin{split} &\Delta \big(KE + PE\big) = 0 \\ &KE_{initial} + PE_{initial} = KE_{final} + PE_{final} \end{split}$$

11/21/12 Physics 131