Physics 131 11/19/12

> November 19, 2012 Physics 131 Prof. E. F. Redish

■ Theme Music: Cannonball Adderly Work Song

■ Cartoon: Bill Watterson Calvin & Hobbes

11/19/12 Physics 131

Foothold ideas: Kinetic Energy and Work

- Newton's laws tell us how velocity changes The Work-Energy theorem tells us how speed (independent of direction) changes.
- Kinetic energy = $\frac{1}{2}mv^2$
- Work done by a force = $\vec{F} \cdot \Delta \vec{r}$ or $F_{\parallel} \Delta r$ (part of force || to displacement)
- Work-energy theorem: $\Delta(\frac{1}{2}mv^2) = F_{\parallel}^{net}\Delta r$

11/19/12 Physics 131 3

Prof. E. F. Redish 1 Physics 131 11/19/12

Foothold ideas: Potential Energy

- For some forces (gravity, electricity, springs) work only depends of the change in position. Such forces are called conservative.
- For these forces the work done by them is written

$$\vec{F} \cdot \Delta \vec{r} = -\Delta U$$

- \blacksquare *U* is called a *potential energy*.
- For gravity, $U_{gravity} = mgh$

11/19/12 Physics 131

Reading questions

- Can the work be negative?
- Where does the ΔU come from?
- Why shouldn't the PE belong to the object?

4

11/19/12 Physics 131 **5**

Prof. E. F. Redish

Physics 131 11/19/12

Mechanical

An Energy Conservation Theorem

- Suppose the only force that has a component along the direction of motion is gravity.
 - The only force that changes the object's speed is gravity.
 - Other forces (normal forces) can change direction.
 - Friction must be negligible.
- Examples:
 - free fall
 - object rolling on a track.

$$\Delta(\frac{1}{2}mv^2 + mgh) = 0$$

$$\frac{1}{2}mv_i^2 + mgh_i = \frac{1}{2}mv_f^2 + mgh_f$$

11/19/12

Physics 13

6

Prof. E. F. Redish