Physics 131 11/16/12

Energy

- N2 tells us that a force can change an object's velocity in one of two ways:
 - It can change the speed
 - It can change the direction
- Analyzing changes in speed leads us to study energy.
- Analyzing changes in direction leads us to study rotations.

11/16/12 Physics 131 **3**

Prof. E. F. Redish

Physics 131 11/16/12

Foothold ideas: Kinetic Energy and Work

- Newton's laws tell us how velocity changes
 The Work-Energy theorem tells us how
 speed (independent of direction) changes.
- Kinetic energy = $\frac{1}{2}mv^2$
- Work done by a force = $F_x \Delta x$ or $F_{\parallel} \Delta r$ (part of force \parallel to displacement)
- Work-energy theorem: $\Delta(\frac{1}{2}mv^2) = F_{\parallel}^{net}\Delta r$

11/16/12 Physics 131

Work in another direction: The dot product

- Suppose we are moving along a line, but the force we are interested in in pointed in another direction? (How can this happen?)
- Only the part of the force in the direction of the motion counts to change the speed (energy).

Work = $F_{\parallel} \Delta r = F \cos \theta \Delta r \equiv \vec{F} \cdot \Delta \vec{r}$

11/16/12 Physics 131

Prof. E. F. Redish

Physics 131 11/16/12

Dot products in general

$$F_{\shortparallel} \Delta r \equiv \vec{F} \cdot \Delta \vec{r}$$

$$\vec{F} \cdot \Delta \vec{r} = F \cos \theta \ \Delta r$$

In general, for any two vectors that have an angle θ between them, the dot product is defined to be

$$\vec{a} \cdot \vec{b} = ab \cos \theta$$

11/16/12

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y$$

The dot product is a scalar. Its value does not depend on the coordinate system we select.

Physics 131

8

Prof. E. F. Redish