Physics 131 10/31/12

October 31, 2012 Physics 131 Prof. E. F. Redish

Theme Music: ZZ Top

Got Me Under Pressure

■ <u>Cartoon:</u> Bill Watterson Calvin & Hobbes

10/31/12 Physics 131

Kinds of Matter

- Classify objects by how they deform.
 - Solid: don't change shape if you leave them alone or push on them (not too hard!)
 - Gel: look solid if you don't touch them but are "squishy" and change shape easily (jello, butter, clay,...)
 - *Liquid*: Have no shape of their own. Flow to fill a container but have constant volume.
 - Gas: Have neither shape nor volume but fill any container.
 - LOTS MORE!

10/31/12 Physics 131 **3**

Prof. E. F. Redish

Physics 131 10/31/12

Foothold ideas: Pressure

- A constrained fluid has an internal pressure

 —like an internal force at every point in all directions.

 (Pressure has no direction.)
- At a boundary or wall, the pressure creates a force perpendicular to the wall. $\vec{F} = p\vec{A}$
- The pressure in a fluid increases with depth. (Why?)

$$p = p_0 + \rho g d$$

■ When immersed in a fluid, an object feels an (upward) BF equal to the weight of the displaced fluid. (Archimedes' Principle)

10/31/12 Physics 131 **4**

Reading Questions

- Why are we allowed to attach a direction to area when its not truly a vector?
- I'm a little confused about how the area can be a vector? What would a negative area indicate?

10/31/12 Physics 131 **5**

Prof. E. F. Redish

Physics 131 10/31/12

Making sense of AP

■ Consider the forces on a bag of water the same shape as an immersed object.

 $\overrightarrow{F}^{\text{buoy}}$ Stone $\overrightarrow{F}^{\text{grav}}$

■ The BF is equal to the weight of the water displaced – that's what the surrounding water can hold up!

10/31/12

Physics 131

6

Reading questions

■ How would you calculate the upward buoyant force if the bottom of a submerged object is not flat ie. perpendicular to the upward buoyant force. For instance, if I submerged a beach ball, would I just use 12 the SA of a sphere? What about if it was inconsistently shaped, like a rock?

10/31/12 Physics 131 **7**

Prof. E. F. Redish