

Making Sense of Coulomb's Law

- Changing the test charge
- Changing the source charge

■ Interpret the sign

$$\vec{F}_{Q \to q} = -\vec{F}_{q \to Q} = \frac{k_C q Q}{R^2} \hat{r}_{Q \to q}$$

10/12/12

Physics 131

Foothold ideas: Electric Forces and Fields

$$\vec{F}_{q_0}^{Enet} = \frac{k_C q_0 q_1}{r_{01}^2} \hat{r}_{1 \to 0} + \frac{k_C q_0 q_2}{r_{02}^2} \hat{r}_{2 \to 0} + \frac{k_C q_0 q_3}{r_{03}^2} \hat{r}_{3 \to 0} + \dots \frac{k_C q_0 q_N}{r_{0N}^2} \hat{r}_{N \to 0}$$

$$\vec{F}_{q_0}^{Enet} = q_0 \vec{E}(\vec{r}_0)$$

$$\vec{E}(\vec{r}_0) = \frac{k_C q_1}{r_{01}^2} \hat{r}_{1 \to 0} + \frac{k_C q_2}{r_{02}^2} \hat{r}_{2 \to 0} + \frac{k_C q_3}{r_{03}^2} \hat{r}_{3 \to 0} + \dots \frac{k_C q_N}{r_{0N}^2} \hat{r}_{N \to 0}$$

10/12/12

Physics 131

5

Review of Vectors (2-dimensional coordinates)

- We have 2 directions to specify. We must
 - Choose a reference point (origin)
 - Pick 2 perpendicular axes (x and y)
 - Choose a scale
- We specify our x and y directions by drawing little arrows of unit length in their positive direction. \hat{i} , \hat{j}
- A force vector is written $\vec{F} = F_x \hat{i} + F_y \hat{j} = (F_x, F_y)$ Physics 131

Physics 131

7

Adding Forces

■ We define the sum of two vectors as if they were successive displacements.

8

9

$$\vec{F} = \vec{F}_1 + \vec{F}_2$$

10/15/12

Physics 131

Adding Vectors: Methods

■ There are 3 mathematical ways to add vectors

Foothold ideas: Fields

- A field is a concept we use to describe anything that varies in space. It is a set of values assigned to each point in space (e.g., temperature or wind speed).
- A force field is an idea we use for non-touching forces. It puts a force vector at each point in space, summarizing the effect of all objects that would exert a force on a particular object placed at that point.
- A gravitational, electric, or magnetic field is a force field with something (a "coupling strength") divided out so the field no longer depends on what test object is used.

$$\vec{g} = \frac{\vec{F}_{\text{acting on } m}}{m} \qquad \vec{E} = \frac{\vec{F}_{\text{acting on } q}}{q}$$
10/15/12 Physics 131

Field is the value at a position in space r assuming that the force is measured by placing the object at r.

In Equations

$$\begin{split} \vec{F}_{q} &= \vec{F}_{Q_{1} \to q} + \vec{F}_{Q_{2} \to q} + \vec{F}_{Q_{3} \to q} + \vec{F}_{Q_{4} \to q} + \dots \\ \vec{F}_{q} &= \frac{k_{c} q Q_{1}}{r_{1}^{2}} \hat{r}_{1} + \frac{k_{c} q Q_{2}}{r_{2}^{2}} \hat{r}_{2} + \frac{k_{c} q Q_{3}}{r_{3}^{2}} \hat{r}_{3} + \frac{k_{c} q Q_{4}}{r_{4}^{2}} \hat{r}_{4} + \dots \end{split}$$

where

10/15/12

 $r_1 = \text{distance from } Q_1 \text{ to } q$ $\widehat{r}_1 = \text{direction from } Q_1 \text{ to } q \text{ (mag. 1, no units!)}$ $r_2 = \text{distance from } Q_2 \text{ to } q \text{ (mag. 1, no units!)}$

Physics 131

Making sense

13

- Notice that F_q/q does NOT depend on q!
- For one source charge

$$\vec{F}_{q} = \frac{k_{C}qQ_{1}}{r_{1}^{2}}\hat{r_{1}}$$
 $\vec{E}_{q} = \frac{\vec{F}_{q}}{q} = \frac{k_{C}Q_{1}}{r_{1}^{2}}\hat{r_{1}}$

■ For many sources

$$\vec{F}_q = \frac{k_C q Q_1}{r_1^2} \hat{r_1} + \frac{k_C q Q_2}{r_2^2} \hat{r_2} + \frac{k_C q Q_3}{r_3^2} \hat{r_3} + \dots \\ \vec{E}_q = \frac{\vec{F}_q}{q} = \frac{k_C Q_1}{r_1^2} \hat{r_1} + \frac{k_C Q_2}{r_2^2} \hat{r_2} + \frac{k_C Q_3}{r_3^2} \hat{r_3} + \dots$$

■ Why not? Why did I label E with a q?

10/15/12 Physics 131 **14**