Physics 131 10/12/12

Prof. E. F. Redish

Physics 131 10/12/12

Foothold idea: Coulomb's Law

■ All objects attract each other with a force whose magnitude is given by

$$\vec{F}_{q \rightarrow Q} = -\vec{F}_{Q \rightarrow q} = \frac{k_C q Q}{r_{qO}^2} \hat{r}_{q \rightarrow Q}$$

 $\blacksquare k_{\rm C}$ is put in to make the units come out right.

$$k_C = 9 \times 10^9 \text{ N-m}^2 / \text{C}^2$$

10 10/12/12 Physics 131

Making Sense of Coulomb's

Law

- Changing the test charge
- Changing the source charge

- Changing the distance —
- Specifying the direction -
- Interpret the sign

10/12/12

Physics 131

15

2 Prof. E. F. Redish

Physics 131 10/12/12

Quantifying Charge

- Need an operational definition.
- Charge is a new kind of quantity (to M, L, T, add Q).
- Choose our scale:
 A small object has a charge of 1 C (= 1 Coulomb) if two identical such charges held at a distance of 1 m exert forces of 9 x 10⁹ N on each other.
- This corresponds to choosing the constant

$$k_{\rm C} = 9 \times 10^9 \,\text{N-m}^2/\text{C}^2$$
.

10/12/12 Physics 131 **16**

Foothold ideas: Electric Forces and Fields

$$\vec{F}_{q_0}^{Enet} = \frac{k_C q_0 q_1}{r_{01}^2} \hat{r}_{1 \to 0} + \frac{k_C q_0 q_2}{r_{02}^2} \hat{r}_{2 \to 0} + \frac{k_C q_0 q_3}{r_{03}^2} \hat{r}_{3 \to 0} + \dots \frac{k_C q_0 q_N}{r_{0N}^2} \hat{r}_{N \to 0}$$

depends on position (and the other charges).

$$\vec{F}_{q_0}^{Enet} = q_0 \vec{E}(\vec{r}_0)$$

$$\vec{E}(\vec{r}_0) = \frac{k_C q_1}{r_{01}^2} \hat{r}_{1 \to 0} + \frac{k_C q_2}{r_{02}^2} \hat{r}_{2 \to 0} + \frac{k_C q_3}{r_{03}^2} \hat{r}_{3 \to 0} + ... \frac{k_C q_N}{r_{0N}^2} \hat{r}_{N \to 0}$$

10/12/12 Physics 131 **18**

Prof. E. F. Redish