■ Theme Music: Charlie Mingus

Tensions

■Cartoon: Jef Mallet Frazz.

Tension: The Ideal (Hooke's Law) Spring

■ An ideal spring changes its length in response to pulls (or pushes) from opposite directions.

$$T = k \Delta l$$

 Δl = change in length (stretch or squeeze)

Scalar vs. Vector Tension: The Chain

■ Consider a series of links of chain being pulled from opposite directions.

What are the forces on each link?

9/28/12 Physics 131

7

Tension: Scalar vs. Vector

- Note we are using the word "tension" in two distinct ways!
- The "tension" in a spring, chain, or string has no direction (or rather, both directions at once). It is a <u>tension scalar</u>.
- When tension appears at the end of a spring, chain, or string, the choice of end gives us a direction and lets us create a tension force.

Foothold ideas: Resistive forces

- Resistive forces are contact forces acting between two touching surfaces that are parallel to the surface and tend to oppose the surfaces from sliding over each other.
- There are three types:
 - Friction (independent of velocity)
 - Viscosity (proportion to velocity)
 - Drag (proportional to the square of velocity)

Foothold Ideas: Friction

- Friction is our name for the interaction between two touching surfaces that is parallel to the surface.
- It acts to oppose the <u>relative motion</u> of the surfaces.

 That is, it acts as if the two surfaces stick together a bit.
- Normal forces adjust themselves in response to external forces. So does friction up to a point.

Static Sliding

$$f_{A \to B} \le f_{A \to B}^{\text{max}} = \mu_{AB}^{\text{static}} N_{A \to B} \qquad f_{A \to B} = \mu_{AB}^{\text{kinetic}} N_{A \to B} \qquad \mu_{AB}^{\text{kinetic}} \le \mu_{AB}^{\text{static}}$$

■ Friction can oppose motion or cause it.