■ Theme Music: Run Like an Antelope *Phish*

■ Cartoon: Johnny Hart BC

Quiz 1

	1.1		1.2		1.3
a	0%	mR/ <i>v</i> ^2	35%	а	0%
b	29%	mR/v	6%	b	88%
С	0%	mR <i>v</i> ^2	59%	C	0%
d	47%			d	0%
е	18%			е	12%
f	0%			f	0%
g	6%				
h	35%				

MCAT and Multiple Representations

■ From the recent guide on the revisions taking place to the MCAT. Physical science skills to be tested include:

MCAT Preview Guide

Skill 1: Knowledge of Scientific Concepts and Principles

- Identifying the relationships between different representations of concepts (verbal, symbolic, graphic)
- Using mathematical equations to solve problems

Skill 2: Scientific Reasoning and Problem-solving

• Determining and using scientific formulas to solve problems

Skill 4: Data-based and Statistical Reasoning

- Using, analyzing, and interpreting data in figures, graphs, and tables
- Evaluating whether representations make sense for particular scientific observations and data

Average velocity as a function of time? Well... Yes!

Foothold ideas: Velocity

Average velocity is defined by

$$\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t} = \frac{\text{vector displacement}}{\text{time it took to do it}}$$

Note: an average velocity goes with a <u>time interval</u>.

■ Instantaneous velocity is what we get when we consider a very small time interval (compared to times we care about)

$$\vec{v} = \frac{d\vec{r}}{dt}$$

Note: an instantaneous velocity goes with a specific time.

Foothold ideas: Acceleration

Average acceleration is defined by

$$\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t} = \frac{\text{change in velocity}}{\text{time it took to do it}}$$

Note: an average acceleration goes with a <u>time interval</u>.

■ Instantaneous acceleration is what we get when we consider a very small time interval (compared to times we care about)

$$\vec{a} = \frac{d\vec{v}}{dt}$$

Note: an instantaneous acceleration goes with a <u>specific time</u>.

Technical term alert!

- Note that in physics we use the term "acceleration" in a technically defined way:
 - "acceleration" = changing velocity
- The object may be speeding up or slowing down or keeping the same speed and changing direction. We still say "it is accelerating."
- In common speech

 "acceleration" = speeding up,

 "deceleration" = slowing down, and

 "turning" = changing direction.
- How many (physics) accelerators are there on your car?

Uniformly changing motion

- If an object moves so that it changes its velocity by the same amount in each unit of time, we say it is in <u>uniformly accelerated motion</u>.
- This means the average acceleration will be the same no matter what interval of time we choose.

$$\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t} = \vec{a}_0$$

$$\Delta \vec{v} = \vec{a}_0 \Delta t$$

$$\vec{v}(t_2) - \vec{v}(t_1) = \vec{a}_0 \Delta t$$

$$\vec{v}_{final} = \vec{v}_{initial} + \vec{a}_0 \Delta t$$
9/10/12

Velocity to acceleration

$$a(t) = \frac{dv}{dt}$$

Ratio of change in velocity that takes place to the (small) time interval

Difference of two velocities at two (close) times

$$a(t) = \frac{v(t + \frac{\Delta t}{2}) - v(t - \frac{\Delta t}{2})}{\Delta t}$$

Acceleration to velocity

$$dv = a(t) dt$$

change in velocity over a small time interval

sum ("Σ") in the changes in velocity over many small time intervals

$$v = \sum dv = \int a(t) dt$$

Physics 131

What have we learned?

$$\hat{r} = x\hat{i} + y\hat{j}$$

(where x and y are signed lengths)

$$\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t}$$
 $\vec{v} = \frac{d\vec{r}}{dt}$

$$\langle \vec{a} \rangle = \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{a} = \frac{d\vec{v}}{dt}$$

- Seeing from the motion
- Seeing consistency (graphs & equations)

Figuring out acceleration

- Look at the y-t, and v_y-t plots for a ball going up and down.
- Acceleration is the derivative of the velocity. How is the velocity changing? Why?

$$\vec{a} = \frac{d\vec{v}}{dt}$$

