

Foothold ideas: Velocity

■ Average velocity is defined by

$$\langle \vec{v} \rangle = \frac{\Delta \vec{r}}{\Delta t} = \frac{\text{vector displacement}}{\text{time it took to do it}}$$

Note: an average velocity goes with a time interval.

■ Instantaneous velocity is what we get when we consider a very small time interval (compared to times we care about)

$$\vec{v} = \frac{d\vec{r}}{dt}$$

Note: an instantaneous velocity goes with a specific time.

9/10/12

Physics 131

3

Multiple Representations

■ We choose different ways of representing things depending on what we want to do.

 Adding multiple sensory modes adds to our sense of an object's reality.

9/10/12

Physics 131

4

Knowing-how-to-know icon: Multiple Representations

- We have many different ways that we represent information:
 - Words
 - Equations
 - Diagrams
 - Pictures

9/10/12 Physics 131 5

Knowing-how-to-know icon: Coherence – Your safety net

■ Throughout the class we will be looking to see physical situations in a variety of different ways.

■ The consistency among the different views protects us against errors of reconstructed memory.

9/10/12 Physics 131

Graphing velocity: Figuring it out from the position Slope

■ You can figure out the velocity graph from the position graph using

$$\langle v \rangle = \frac{\Delta x}{\Delta t}$$
 $\Delta x = \langle v \rangle \Delta t$

Graphing Velocity: Figuring it out from the motion

- An object in uniform motion has constant velocity.
- This means the instantaneous velocity does not change with time. Its graph is a horizontal line.
- You can make sense of this by putting your mind in "velocity mode" and running a mental movie.

9/10/12 Physics 131

What have we learned? Representations and consistency

- Visualizing where an object is → a position graph at different times
- Visualizing how fast an object is moving → a velocity graph at different times
- Position graph → velocity graph slopes $v = \frac{\Delta x}{\Delta t}$
- Velocity graph → position graph

areas $\Delta x = v \Delta t$

9/10/12 Physics 131 11