Physics 131- Fundamentals of Physics for Biologists I

Professor: Wolfgang Losert wlosert@umd.edu

11/02/2012

- Quiz 6 review
- Archimedes Principle
- Buoyancy

Distinguished Scholar-Teacher Lecture: Robert M. Briber Soft Materials & Polymers: The Materials Science of Squishy Stuff Wed, Nov 14, 4:00 p.m. Room 1101 Biosciences Research Building

This lecture will discuss the science behind the unusual properties of polymers, from commercial plastics to biomolecules. It is designed to be entertaining to a general audience of non-scientists and will incorporate demonstrations.

Quiz return

	Avg: 7	
A	C	C
C	C	В
C	C	В
C	C	A
C	C	D
C	С	В
A	C	В
C	В	C
esponses		
C	C	C

$$F = \left(\frac{2mv_x}{\Delta t}\right) \left(\frac{1}{2}nAv_x\Delta t\right) = nmv_x^2 A$$

$$p = \frac{F}{A} = nmv_x^2$$

$$pV = Nk_BT$$

2

More on simple liquids!

- Pressure
- Archimedes Principle
- Buoyancy
- Surface tension

11/3/2012 Physics 131 3

Consider the containers at right. Which of the following correctly compares the *pressure* (*P*) of the water at the bottoms of the containers?

1.
$$P_1 = P_2 = P_3$$

2.
$$P_3 > P_1 > P_2$$

3.
$$P_3 > P_1 = P_2$$

4.
$$P_2 > P_1 > P_3$$

5.
$$P_1 = P_2 > P_3$$

7. Not sure

Consider the containers at right.
Which of the following correctly compares the *pressure* (*P*) of the water at the bottoms of the containers?

- 1. $P_1 = P_2 = P_3$
- 2. $P_3 > P_1 > P_2$
- 3. $P_3 > P_1 = P_2$
- 4. $P_2 > P_1 > P_3$
- 5. $P_1 = P_2 > P_3$
- 6. Other ranking
- 7. Not sure

Consider the containers at right. Which of the following correctly compares the *Force* (*F*) of the water at the bottoms of the containers?

- 2. $F_3 > F_1 > F_2$
- 3. $F_3 > F_1 = F_2$
- 4. $F_2 > F_1 > F_3$
- 5. $F_1 = F_3 < F_2$
- 6. Other ranking

7. Not Sure

A container is filled with oil and fitted on both ends with pistons. The area of the left piston is (0.1 inch)²; that of the right piston (10inch)². What weight must I place on the piston to balance the weight of a 1 ton (1000 kg) car?

- 1. 0.1 kg
- 2. 10 kg
- з. 1,000 kg
- 4. 10⁶ kg
- 5. 10^8 kg
- 6. insufficient information

Making sense of Buoyant Forces

 Draw system schema for the system below and then a free body diagram for the bag of water

Swimming Pool

Bag filled with Water

Replace the bag a water with a rock of equal volume in the system schema and free body diagram

- What changed?

8

Three cubes of equal volume are hung on strings. A and B have the same mass and block C has less. The blocks are lowered into a fish tank and they hang at rest as shown.

How does the force exerted by the water on the <u>top</u> surface of cube A compare to the force exerted by the water on the top surface of cube B?

- 2. The force on the top surface of B is bigger
- 3. They are the same.

11/3/2012

Physics 131

 $M_A = M_B > M_C$

Three cubes of equal volume are hung on strings. A and B have the same mass and block C has less. The blocks are lowered into a fish tank and they hang at rest as shown.

How does the force exerted by the water on the <u>top</u> surface of cube A compare to the force exerted by the water on the top surface of cube C?

- 1. The force on the top surface of A is bigger
- 2. The force on the top surface of C is bigger
- 3. They are the same.

11/3/2012

Physics 131

Three cubes of equal volume are hung on strings. A and B have the same mass and block C has less. The blocks are lowered into a fish tank and they hang at rest as shown.

How do the buoyant forces exerted by the water on the three cubes rank?

- 1. $F_B > F_A = F_C$
- 2. $F_B = F_A > F_C$
- 3. $F_B > F_A > F_C$
- 4. $F_A = F_B = F_C$
- 5. Some other ranking 11/3/2012

If I heat an enclosed volume of gas so that its Kelvin temperature doubles, what happens to the average speed

- of the molecules in the gas?
 - 1. It more than doubles.
 - 2. It doubles.
 - 3. It increases by between 50% and 100%.
 - 4. It increases but by less than 50%.
 - 5. It stays the same

6.26/11 decreases.

Physics 131

12

6