Physics 131- Fundamentals of Physics for Biologists I

Professor: Wolfgang Losert wlosert@umd.edu

10/26/2012

Waves inside cells
Waves are biochemical
and mechanical

Outline

Simple examples of emergent behavior of collections of molecules

- Diffusion
 - Fick's Law
- Kinetic theory
 - Ideal Gas law

10/27/2012 Physics 131 2

Foothold ideas: Kinetic Theory of a Gas

- We model the gas as lots of tiny little hard spheres far apart (compared to their size) and moving very fast.
- The motions are in all directions and change directions very rapidly. A model saying that on the average the total momentum is 0 (and stays 0 by momentum conservation) is a good one.
- Because there are some many particles and the collisions so sensitive to initial conditions, we can't predict the motion of individual particles for long.

10/26/12 Physics 131 3

Diffusion: Fick's law (1D analysis)

- Uniform fluid (black) containing (red) molecules with a varying concentration.
- Fluid molecules jiggle the (red) molecules around.

12/5/11 Physics 131 4

How many cross A in a time Δt ?

■ Number hitting A from left

$$\frac{1}{2}n_{-}(Av_{0}\Delta t)$$

Number hitting A from right $\frac{1}{2}n_+(Av_0\Delta t)$

Net flow across A

$$\frac{1}{2}(n_{-}-n_{+})(Av_{0}\Delta t)$$

Define flux (per unit area per unit time) as J therefore:

$$JA\Delta t = \frac{1}{2} (n_{-} - n_{+}) (Av_{0}\Delta t)$$
$$J = \frac{1}{2} \Delta n (v_{0})$$

Physics 131

5

Fick's law

■ 1D result

$$J = -D\frac{dn}{dx} \quad D = \frac{1}{2}\lambda v_0$$

Does not yield the trajectory of molecules, but tells us, how a collection of molecules is distributed

12/5/11 Physics 131 6

In this simulation, a "walker" starts at 0 and steps left and right with equal probability. We will let it take N steps. If we release a lot of walkers from the origin at once, on the average, what will our distribution of particles look like? There will be equal numbers near +N/2 and -N/2 88% They will be mostly near 0 no matter how many steps you take. It will peak at 0 and getting farther will decrease in probability. 13% 0% 0% There will be peaks at + and values but not at +N/2 and -N/2; 0 will be less likely. 10/27/2012 Physics 1314

The average distance travelled is 1. Zero 2. Close to zero, does not depend on time 3. Non-zero, increases with time 4. Non-zero, decreases with time 5. Not enough information 10/27/2012 Physics 131

Foothold ideas: Random walk in 1D

- As a result of random motion,
 an initially localized distribution will spread out, getting wider and wider. This phenomenon is called *diffusion*
- n The square of the average distance traveled during random motion will grow with time:

 $\left\langle \left(\Delta x\right)^{2}\right\rangle = 2D\Delta t$

n D is called the diffusion constant and has dimensionality $[D] = L^2/T$

The gradient

- If we want to take the derivative of a function of one variable, y = df/dx, it's straightforward.
- If we have a function of three variables f(x,y,z) what do we do?
- The gradient is the **vector derivative**. To get it at a point (x,y,z)
 - Find the direction in which *f* is changing the fastest.
 - Take the derivative by looking at the rate of change in that direction.
 - Put a vector in that direction with its magnitude equal to the maximum rate of change.
 - The result is the vector called $\vec{\nabla} f$

12/5/11 Physics 131 10

Fick's law

■ 1D result

$$J = -D\frac{dn}{dx} \quad D = \frac{1}{2}\lambda v_0$$

■ For all directions (not just 1D) Fick's law becomes

$$\vec{J} = -D\vec{\nabla}n$$

12/5/11 Physics 131 11

Does n have the same dimension in both equations?

$$J = -D\frac{dn}{dx} \qquad \vec{J} = -D\vec{\nabla}n$$

- 1. Yes
- 2. No
- 3. Depends
- 4. Not sure

10/27/2012

Physics 131

File Display Tools Help In this simulation, a lot of "walkers" starts in 2D near 0 and step in a random directions with equal probability. As time grows, what will happen to the distribution of walkers – number as a function of distance?? They will form a "wave" - a ragged ring of particles moving D D outward. Walkers = 1000 They will be mostly stay near 0 no matter how long you wait. It will peak at 0 and getting farther 75% will decrease in probability, the distribution remaining mostly the 25% It will peak at 0 and getting farther will decrease in probability, the distribution getting wider with

Physics 131

time.

Can we understand the ideal gas law from the motion of molecules?

■ Dilute gases satisfy the Ideal Gas Law

$$pV = n_{moles}RT$$

10/27/2012 Physics 131 15

Summarizing the model

- In between collisions each molecule moves in a straight line – ignoring gravity. (We've used N1!)
- Ignore up and down motions.
- Momentum change of a molecule that bounces off the wall exerts a force on the wall.
- The force on the wall will be the change in momentum of all the molecules that bounce off the wall in a time Δt divided by Δt .

 F = $\left(\frac{2mv_x}{\Delta t}\right)\left(\frac{1}{2}nAv_x\Delta t\right) = nmv_x^2A$
- Calculate this using density.

$$F = \left(\frac{2mv_x}{\Delta t}\right) \left(\frac{1}{2}nAv_x\Delta t\right) = nmv_x^2 A$$

$$p = \frac{F}{A} = nmv_x^2 = \frac{N}{V}mv_x^2 = \frac{N}{V}\frac{1}{3}m\langle v^2 \rangle$$

$$pV = N\frac{2}{3}\left(\frac{1}{2}m\langle v^2 \rangle\right)$$

10/26/12

Physics 131

8

16

