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Waves inside cells
Waves are biochemical 
and mechanical 

Outline

Simple examples of emergent behavior 
of collections of molecules

 Diffusion
– Fick’s Law

 Kinetic theory
– Ideal Gas law
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Foothold ideas: 
Kinetic Theory of a Gas

 We model the gas as lots of tiny little hard spheres far apart 
(compared to their size) and moving very fast.

 The motions are in all directions and change directions very 
rapidly. A model saying that on the average the total 
momentum is 0 (and stays 0 by momentum conservation) is 
a good one.

 Because there are some many particles and the collisions so 
sensitive to initial conditions, we can’t predict the motion of 
individual particles for long.
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Diffusion:
Fick’s law (1D analysis)

 Uniform fluid (black) 
containing (red) molecules 
with a varying 
concentration.

 Fluid molecules jiggle the 
(red) molecules around. 

12/5/11 4Physics 131



Physics 131 10/27/2012

Prof W. Losert 3

How many cross A in a time ∆t?
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 Number hitting A from left

 Number hitting A from right

 Net flow across A

 Define flux (per unit area per unit 
time) as J therefore:   
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Fick’s law

 1D result

Does not yield the trajectory of molecules, 
but tells us, how a collection of molecules 
is distributed
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J  D
dn

dx
D  1
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In this simulation, a “walker” starts at 0 
and steps left and right with equal 

probability. We will let it take N steps. If 
we release a lot of walkers from the origin 

at once, on the average, what will our 
distribution of particles look like?
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1. There will be equal numbers near 
+N/2 and –N/2

2. They will be mostly near 0 no 
matter how many steps you take.

3. It will peak at 0 and getting farther 
will decrease in probability.

4. There will be peaks at + and –
values but not at +N/2  and –N/2; 0 
will be less likely.

The average distance travelled is
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1. Zero

2. Close to zero, does not 
depend on time

3. Non-zero, increases 
with time

4. Non-zero, decreases 
with time

5. Not enough information
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Foothold ideas:
Random walk in 1D

910/22/12 Physics 131

n As a result of random motion, 
an initially localized distribution will spread 
out, getting wider and wider. This 
phenomenon is called diffusion

n The square of the average distance 
traveled during random motion will grow 
with time:

n

n D is called the diffusion constant and has 
dimensionality [D] = L2/T 

 2
2x D t  

The gradient
 If we want to take the derivative of a function of one 

variable, y = df/dx, it’s straightforward.

 If we have a function of three variables –
f(x,y,z) – what do we do?

 The gradient is the vector derivative. 
To get it at a point (x,y,z) 
– Find the direction in which f is changing the fastest.

– Take the derivative by looking at the rate of change in that 
direction.

– Put a vector in that direction with its magnitude equal to the 
maximum rate of change. 

– The result is the vector called 
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Fick’s law

 1D result

 For all directions (not just 1D) Fick’s law 
becomes
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J  D
dn

dx
D  1

2 v0



J  D


n

Does n have the same dimension in both equations?
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In this simulation, a lot of “walkers” starts in 2D 
near 0 and step in a random directions with 
equal probability. As time grows, what will 

happen to the distribution of walkers – number 
as a function of distance??
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1. They will form a “wave” – a 
ragged ring of particles moving 
outward.

2. They will be mostly stay near 0 
no matter how long you wait.

3. It will peak at 0 and getting farther 
will decrease in probability, the 
distribution remaining mostly the 
same.

4. It will peak at 0 and getting farther 
will decrease in probability, the 
distribution getting wider with 
time.

Foothold ideas:
Random walk in 2D

14

 The density of walkers decreases 
uniformly as you get farther from 
the source.

 The total number within a given 
radius peaks – since the area 
within a radius r decreases to 0 as 
r gets small. 

 The average squared 
displacement grows with time :
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Can we understand the ideal gas 
law from the motion of molecules?

 Dilute gases satisfy the Ideal Gas Law

10/27/2012 15Physics 131

pV  nmolesRT

Summarizing the model

 In between collisions each molecule 
moves in a straight line – ignoring 
gravity. (We’ve used N1!)

 Ignore up and down motions.

 Momentum change of a molecule that 
bounces off the wall exerts a force on 
the wall.

 The force on the wall will be 
the change in momentum of all the 
molecules that bounce off the wall in a 
time ∆t divided by ∆t.

 Calculate this using density.
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The Ideal Gas Law
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pV  nmolesRT

pV  NkBT

Chemist’s
form

Physicist’s
form

nmoles 
N

NA

R  kBNA

p  nmvx
2 3

2 kBT  1
2 mv 2

Could you still use the ideal gas 
law to analyze the inside of a cell
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