Physics 131- Fundamentals of Physics for Biologists I

Professor: Wolfgang Losert wlosert@umd.edu

10/19/2012

Electrical forces

Outline

- Electric Fields
- Momentum

10/21/2012 Physics 131 2

A test charge, q, is a distance d from a charge Q as shown. It feels an electric force, F_0 . If q were replaced by a charge -3q, the electric force on it would

- 1. Change to $-3F_0$
- 2. Change to $-F_0/3$
- 3. Not change
- 4. Change to $3F_0$
- 5. Change to $F_0/3$
- 6. Something else

10/17/11

Foothold idea: Electric Forces and Fields

When we focus our attention on the electric force on a particular object with charge q_0 (a "test charge") we see the force it feels depends on q_0 .

Define quantity that does not depend on charge of test object "test" charge -> **Electric Field E**

$$\vec{F}_{q_0}^{Enet} = \frac{k_C q_0 q_1}{r_{01}^2} \hat{r}_{1 \to 0} + \frac{k_C q_0 q_2}{r_{02}^2} \hat{r}_{2 \to 0} + \frac{k_C q_0 q_3}{r_{03}^2} \hat{r}_{3 \to 0} + \dots \frac{k_C q_0 q_N}{r_{0N}^2} \hat{r}_{N \to 0}$$

$$\vec{F}_{q_0}^{Enet} = q_0 \vec{E}(\vec{r}_0)$$

$$\vec{E}(\vec{r}_0) = \frac{k_C q_1}{r_{01}^2} \hat{r}_{1\to 0} + \frac{k_C q_2}{r_{02}^2} \hat{r}_{2\to 0} + \frac{k_C q_3}{r_{03}^2} \hat{r}_{3\to 0} + \dots \frac{k_C q_N}{r_{0N}^2} \hat{r}_{N\to 0}$$

10/12/12 Physics 131

Foothold ideas: Fields

- A field can have a different in magnitude at different points in space. (and if it's a vector field, direction). Examples: temperature, wind speed, wind direction
- A gravitational, electric, or magnetic field is a force field. Fields allow us to predicts the force that a test object would experience. The field does not depend on what test object is used.

$$\vec{g}(\vec{r}) = \frac{\vec{F}_{\text{acting on } m}(\vec{r})}{m} \qquad \vec{E}(\vec{r}) = \frac{\vec{F}_{\text{acting on } q}(\vec{r})}{q}$$
Physics 131

Field is the value at a position in space "r" assuming that the force is measured by placing the object at r.

Momentum

10/21/2012 Physics 131 8

Momentum: Definition

■ We define momentum:

$$\vec{p} = m\vec{v}$$

- This is a way of defining "the amount of motion" an object has.
- Our "delta" form of N2 becomes

 $\vec{F}^{net} = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a}$ which we can rewrite as

$$\vec{F}^{net} = \frac{\Delta (m\vec{v})}{\Delta t} = \frac{\Delta \vec{p}}{\Delta t}$$

10/19/12 Physics 131

The Impulse-Momentum Theorem

■ Newton 2

- $\vec{a} = \vec{F}^{net} / m$
- Put in definition of a $\frac{d\vec{v}}{dt} = \frac{\vec{F}^{net}}{m}$
- Multiply up by Δt
- $m\Delta \vec{v} = \vec{F}^{net} \Delta t$
- Define Impulse
- $\vec{\mathcal{J}}^{net} = \vec{F}^{net} \Delta t$
- Combine to get Impulse-Momentum Theorem

$$\Delta \vec{p} = \vec{\mathscr{J}}^{net}$$

10 10/19/12 Physics 131

Momentum Conservation: 1

■ If two objects, A and B, interact with each other and with other ("external") objects,

$$m_A \Delta \vec{v}_A = (\vec{F}_A^{ext} + \vec{F}_{B \to A}) \Delta t$$

$$m_B \Delta \vec{v}_B = (\vec{F}_B^{ext} + \vec{F}_{A \to B}) \Delta t$$

■ Adding:

$$m_{A} \Delta \vec{v}_{A} + m_{B} \Delta \vec{v}_{B} = \left[\vec{F}_{A}^{ext} + \vec{F}_{B}^{ext} + \left(\vec{F}_{A \to B} + \vec{F}_{B \to A} \right) \right] \Delta t$$

$$\Delta \left(m_{A} \vec{v}_{A} + m_{B} \vec{v}_{B} \right) = \vec{F}_{AB}^{ext} \Delta t$$

10/19/12

Physics 131

Momentum Conservation: 2

■ If the external forces on the "system of interest" cancel, then momentum is conserved.

$$\Delta (m_A \vec{v}_A + m_B \vec{v}_B) = 0$$

$$m_A \vec{v}_A^i + m_B \vec{v}_B^i = m_A \vec{v}_A^f + m_B \vec{v}_B^f$$

Example: Recoil

- When an object at rest emits a part of itself, in order to conserve momentum, it must go back in the opposite direction.
- What forces are responsible for this motion?

■ Practice with equations

http://www.physics.umd.edu/perg/abp/TP Probs/Problems/P&E/P&E26.htm

10/21/2012 Physics 131 14