Physics 131- Fundamentals of Physics for Biologists I

Professor: Wolfgang Losert wlosert@umd.edu

10/15/2012

Electrical forces

Movie: Volcanoe lighning

Outline

- Calculating with Coulomb's law
- Electric Fields

10/18/2012 Physics 131 2

Conductors and Insulators

Insulators

- In some matter, the charges they contain are bound and cannot move around freely.
- Excess charge put onto this kind of matter tends to just sit there.

Conductors

- In some matter, charges in it can move around throughout the object.
- Excess charge put onto this kind of matter redistributes itself or flows off (if there is a conducting path to ground).
- Unbalanced charges attract neutral matter (polarization)

10/10/12 Physics 131 3

Foothold idea: Coulomb's Law

$$\vec{F}_{q \to Q} = \frac{k_C q Q}{r_{qQ}^2} \, \hat{r}_{q \to Q}$$

$$k_C = 9 \times 10^9 \text{ N-m}^2 / \text{C}^2$$

10/12/12 Physics 131 4

Two identical conductors hang from nonconducting strings. They are given charges $q_1 = Q$ and $q_2 = 3Q$. After charging, the two strings make angles of θ_1 and θ_2 with the vertical. How do the angles compare?

3.
$$\theta_1 = \theta_2$$

4. You don't have enough information to tell.

10/17/11

Physics 131

6

where does 1/r² term in Coulomb's law come from?

■ Demonstration: Charged Aluminum pans

10/18/2012 Physics 131

Multiple charges

- Draw four objects, three with + charge, one with - charge in system schema.
 Ignore all other interactions.
- Which charge is q which one is Q

10/18/2012 Physics 131 8

