Physics 131- Fundamentals of Physics for Biologists I

Professor: Wolfgang Losert wlosert@umd.edu

10/12/2012

Electrical forces

Movie: Volcanoe lighning

Outline

- Polarization
- Coulomb's law
- Electric Fields

10/12/2012 Physics 131 2

Model: Charge A hidden property of matter

- Matter is made up of two kinds of electrical matter (positive and negative) that have equal magnitude and that cancel when they are together and hide matter's electrical nature.
- Matter with an equal balance is called neutral.
- Like charges repel, unlike charges attract.
- The algebraic sum of postive and negative charges is a constant (i.e, N₊- N₋ = const.)

10/10/12 Physics 131 3

Conductors and Insulators

- In some matter, the charges they contain are bound and cannot move around freely.
- Excess charge put onto this kind of matter tends to just sit there.

n Conductors

- In some matter, charges in it can move around throughout the object.
- Excess charge put onto this kind of matter redistributes itself or flows off (if there is a conducting path to ground).
- Unbalanced charges attract neutral matter (polarization)

10/10/12 Physics 131 4

Example of charging in Insulators: Volcano lightning

- Watch movie
- Explain lightning

10/12/2012 Physics 131 5

Example of Charging in a conductor:

A + charged object is placed near a conductor attached to an insulating pedestal (see Fig a). After the opposite side of the conductor is grounded for a short time (Fig b), the conductor becomes negatively charged (Fig c). Based on this information, we can conclude that within the conductor

- 1. both + and charges move freely
- 2. only charges move freely
- 3. only + charges move freely
- 4. We can't really conclude anything

Question: "If neutral objects are composed of equal parts positive and negative charges, why isn't it possible for neutral objects to repel charges? Or, why can't nothing happen?"

10/12/2012 Physics 131

Foothold idea: Coulomb's Law

All objects attract each other with a force whose magnitude is given by

$$\vec{F}_{q \to Q} = \frac{k_C q Q}{r_{qQ}^2} \, \hat{r}_{q \to Q}$$

 $_{\rm n}$ $_{\rm K_C}$ is put in to make the units come out right.

$$k_C = 9 \times 10^9 \text{ N-m}^2 / \text{C}^2$$

10/12/12 Physics 131 10

Making sense

Our equations don't just provide a way of calculating something: They express relationships about the physical world.

■ We have to "see the dog" in our equations.

9/8/10

