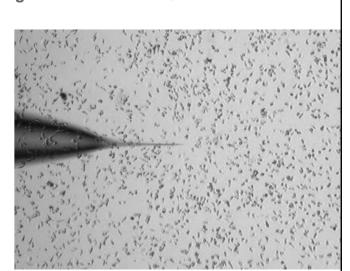
Physics 131- Fundamentals of Physics for Biologists I

Professor: Wolfgang Losert


wlosert@umd.edu

9/24/2012

-How can we describe motion (Kinematics)

 What is responsible for motion (Dynamics)

Movie of the Day Chemically guided motion

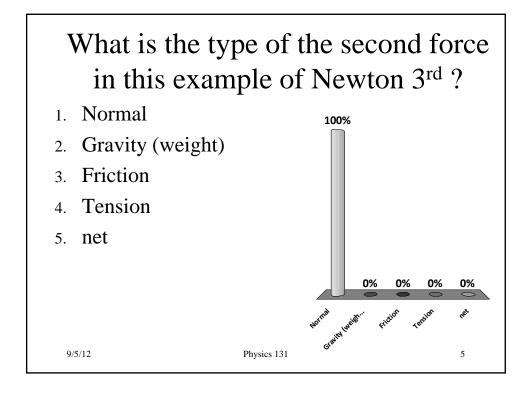
Outline

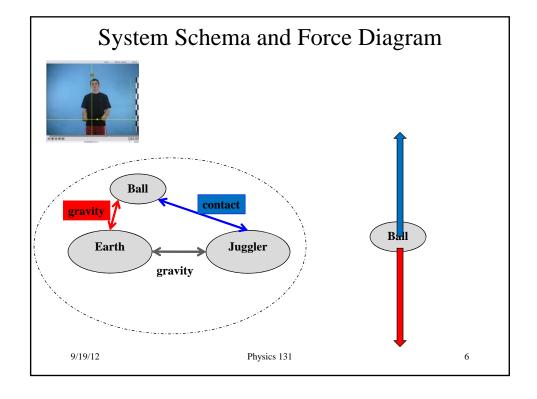
- Quiz 3
- NEW office hours
 - 5pm-6.30pm Thursday
- Newtons Laws
- Forces
 - Gravitational Force
 - Spring force
 - Normal force

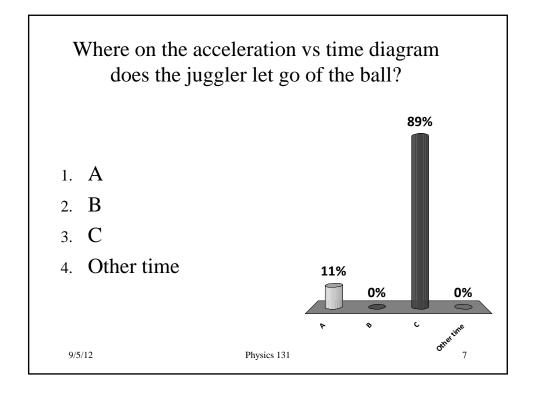
9/19/12 Physics 131

Newton's Laws

- Newton 0:
 - An object responds to the forces it feels when it feels them.
- Newton 1:
 - An object that feels a net force of 0 keeps moving with the same velocity (which may = 0).
- Newton 2:
 - An object that is acted upon by other objects changes its velocity according to the rule $\vec{a}_A = \vec{F}_A^{net} / m_A$
- Newton 3:
 - When two objects interact the forces they exert on each other are equal and opposite. $\vec{F}_{A \to B}^{type} = -\vec{F}_{B \to A}^{type}$


9/24/12 Physics 131


Kinds of Forces

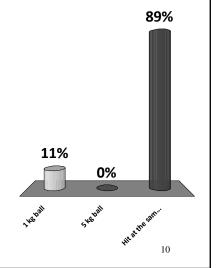

- Touch Don't touch
 - − Normal Force N − Weight Force W
 - Tension Force T Electric Force F^E
 - Friction Forces f, F^D, F^V Magnetic Force F^M
- Notation convention.

 $\vec{F}_{ ext{(object causing force)} o ext{(object feeling force)}}$

9/24/12 Physics 131 4

Review of forces 9/5/12 Physics 131 8

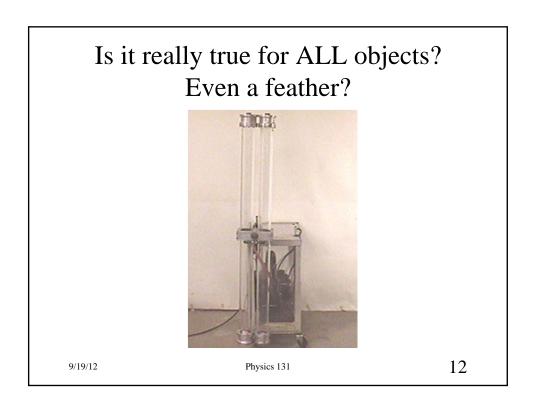
Weight Force W


■ Experiment: See how it behaves when gravity is the <u>only</u> force acting on it. We expect it to speed up (accelerate). How does that acceleration depend on the object?

$$\vec{a}_A = \frac{\vec{W}_{E \to A}}{m_A}$$

9/19/12 Physics 131 9

The prof drops two metal spheres, one of 1 kg, the other of 5 kg. Which object hits the ground first


- 1. 1 kg ball
- 2. 5 kg ball
- 3. Hit at the same time

9/19/12

Physics 131

The prof drops two metal spheres, one of 1 kg, the other of 5 kg. They hit the ground at (almost) exactly the same time. The weight force on the 5 kg weight is: Greater than the force on 1. 78% the 1 kg weight Less than the force on 2. the 1 kg weight The same as the force on the 1 kg weight. 11% 11% There is not enough 0% information to tell. Physics 131 9/19/12

The Gravitational Field Strength

■ We find that, when we can ignore the effects of air as another object that exerts force, that all objects accelerate the same in free fall (only *W* acting).

$$\vec{a}_A = \vec{g} = \frac{\vec{W}_{E \to A}}{m_A}$$
 (independent of A!)

- Experimentally, this is a constant independent of the object. Therefore: $\vec{W}_{E \to A} = m_A \vec{g}$
- Define the constant g as the *gravitational field strength*. (Units of N/kg)

 $g \approx 9.8 \text{ N/kg}$ 13