Physics 131- Fundamentals of Physics for Biologists I

Professor: Wolfgang Losert wlosert@umd.edu

9/7/2012

Main Topic: Motion

-How can we describe motion (Kinematics)

What is responsible for motion (Dynamics)

Movie of the Day

Development of a Fruit Fly Embryo – from Phil Keller, Janelia Farm

Foothold ideas: Coordinates in space

- In order to specify the position of something we need a coordinate system.
- The coordinate system includes:
 - Picking an origin
 - Picking perpendicular directions for the axes of the coordinate system
 - Choosing a measurement scale
- Each point in space in then specified by
 - three numbers: the x, y, and z coordinates.
 - a <u>position vector</u>— an arrow drawn showing the displacement from the origin to that position.

9/5/12 Physics 131 2

Coordinates in Space Notation

- We specify the directions we are talking about by drawing two little arrows of unit length in two perpendicular directions.
- "x" and "y" are called the coordinates and can be positive or negative.
- Note that if x is negative, it means x^i is a vector pointing in the direction opposite to

Physics 131

Graphing Position

- Describe where something is in terms of its coordinate at a given time.
- o Choose origin
- Choose axes
- o Choose scale
- Set scales on graph
- Take data from video
- Construct different graphs
- o Fit the graphs with math functions

9/5/12

Motion along a straight line (1-dimensional coordinates)

- We specify which direction we are talking about by drawing a little arrow of unit length in the positive direction.
- We specify that we are talking about this arrow in symbols by writing \hat{i}
- A position a distance x from the origin is written as $x\hat{i}$
- Note that if x is negative, it means a vector pointing in the direction opposite to \hat{i}

9/5/12 Physics 131 7

The sonic ranger (motion detector)

- The sonic ranger measures distant to the nearest object by echolocation
 - A speaker clickes 30 times a second.
 A microphone detects the sound bouncing back from the nearest object in front of it.
 - The computer calculates the time delay between and using the speed of sound (about 343 m/s at room temperature) it can calculate the distance to the object.

9/7/12 Physics 131 8

Example

- If I place the sonic ranger at the left side of the room and you walk slowly towards it at almost a constant velocity what will the position graph look like?
- Generate the graph on your whiteboard.

How does position change

- Average velocity
 - = (how far did you go?)/(how long did it take you?)

$$\langle v \rangle = \frac{\Delta x}{\Delta t}$$

■ Instantaneous velocity = same (but for short Δt)

$$v = \frac{dx}{dt}$$

_{₹5/12}Velocity

Physics 131

11

Differential equation

- 1. I never heard of this and I have no idea what this is – unless you mean the equation that lets me take a derivative (or maybe define what it is).
- 2. I have heard the term, but I'm not really sure what it means.
- 3. I know what it is but I wouldn't have any idea how to solve one.
- 4. I know what it is and I can solve some simple ones. 9/7/12

Physics 131

12

Epidemiology

- 1. I never heard of this and I have no idea what this is.
- 2. I have heard the term, but I'm not really sure what it means.
- 3. I know what it is but I wouldn't be able to explain it to someone.
- 4. I know what it is and I can explain it.

9/7/12 Physics 131 13

Example of a Diff Eq.

- Epidemiology: Number of people infected by a disease is proportional by the number of people in the population
- A simple model for the spread of infection

$$\frac{dI(t)}{dt} = AI(t) - BI(t)$$

A = rate at which population gets infected

B =rate at which infected people are cured (or die)

$$\frac{dI}{dt} = (A - B)I$$

9/7/12

Physics 131

14