Physics 131- Fundamentals of Physics for Biologists I

Professor: Wolfgang Losert

wlosert@umd.edu

9/5/2012 - Main Topic: Motion

-Coordinates, Graphs, Vectors

Deborah Hemingway

Movie of the Day
Development of the Central Nervous System

Outline

- Recap:
 - Estimation
- **The Main Topic: Motion**
 - Kinematics Describing Motion:
 - » Coordinates
 - » Graphs
 - » Vectors

9/5/12 Physics 131 2

Useful numbers (people)

Numbers

Number of people on the earth \sim 7 billion (7 x 10⁹)

Number of people in the USA ~ 300 million (3 x 10⁸)

Number of people in the state of Maryland ~ 5 million (5 x 10⁶)

Number of students in a large state university \sim 30-40 thousand (3 x 10⁴)

Physics 131

Useful numbers (distances)

Macro Distances	
Circumference of the earth	~24,000 miles (1000 miles/time zone at the equator)
Radius of the earth*	$2/\pi \times 10^7 \text{ m}$
Distance across the USA	~3000 miles
Distance across DC	~10 miles
9/5/12	Physics 131 4

Estimate the number of cells in your body.

- 1. 10³
- 2. 104
- 3. 10⁵
- 4. 10⁶
- 5. 10⁸
- 6. **10**¹⁰
- 7. 10¹²
- 8. **10**¹⁴

■ Estimation is harder in biology problems since we may not have the knowledge of some basic numbers that can be used as a foothold for estimation

9/5/12 Physics 131 6

Foothold Biology Numbers

Numbers that we do NOT know from personal experience but that we need to build an "intuition" for living systems

Bio Scales	
Size of a typical animal cell	~10-20 microns (10 ⁻⁵ m)
Size of a bacterium, chloroplast, or mitochondrion	~1 micron (10 ⁻⁶ m)
Size of a medium-sized virus	~0.1 micron (10 ⁻⁷ m)
Thickness of a cell membrane	~10nanometer = 0.01 micron (10 ⁻⁸ m)
9/5/12 Phys	ics 131 7

Foothold Biology Numbers

- You will learn foothold biology numbers throughout this physics class
 - Volume of a Cell
 - Speed of a living system (calculate in lab,recitation,HW)
 - Number of molecules per μ m³ in nM solution (you will calculate this in HW)
 - electrical potential of neurons

9/5/12 Physics 131

Outline

- Recap:
 - Estimation
- **■** The Main Topic: Motion
 - **Kinematics:** Describing Motion
 - » Coordinates
 - » Graphs
 - » Vectors

9/5/12 Physics 131 9

Foothold ideas: Coordinates in space

- In order to specify the position of something we need a coordinate system.
- The coordinate system includes:
 - Picking an *origin*
 - Picking perpendicular directions for the axes of the coordinate system
 - Choosing a measurement scale
- Each point in space in then specified by
 - three numbers: the x, y, and z coordinates.
 - a <u>position vector</u>— an arrow drawn showing the displacement from the origin to that position.

9/5/12 Physics 131 10

Notation

■ We specify the directions we are talking about by drawing two little arrows of unit length in two perpendicular directions.

■ "x" and "y" are called the coordinates and can be positive or negative.

■ Note that if x is negative, it means x^i is a vector pointing in the direction opposite to

9/5/12 Physics 131

Graphing Position

- Graphs for the eye vs. graphs for the mind.
- Describe where something is in terms of its coordinate at a given time.
- Choose origin
- o Choose axes
- o Choose scale
- o Set scales on graph
- o Take data from video
- o Construct different graphs
- Fit the graphs with math functions

Physics 131

9/5/12

