

Review of 8/29/2012

- · New class -
 - new physics at the convergence with biology and chemistry
 - taught in a "flipped class" with prereading and hands on in class activity
- · Be aware of how you learn!
 - Develop a framework of "intuition" for scientific reasoning
 - Question whether your intuitive answer makes sense
 - Learn to explain your reasoning to your peers and to challenge their reasoning

Topics

- Math in natural sciences
- Units and dimensions
- Estimation
- Scaling

8/31/12 Physics 131

Math in math vs Math in the natural sciences

I keep comments anonymous (add your name to the comment if you would like me to know your name associated with a comment)

"Does "math in math" refer to math that is purely theoretical, without any context?"

"Isn't calculus considered an evaluation process as well, with problems such as trigonometry- where the answer isn't a designated value but rather a simplified expression from the original, given solution?"

"I would like to know an example where the mathematical equation has taught scientists new insight about a physical system. "

"Why does the article try to explain math in math classes as useless knowledge to get to a meaningless number?"

Foothold ideas: Modeling the world with math

- Mathematical processing allows us to make predictions (2) from the model that we can interpret (3) for the physical system.
- Very non-natural physical systems such as lasers, transistors have been designed via such "model based extrapolation".
- In biology, steps 1 and 3 are still very hard

Foothold Idea Dimensional analysis

- Modeling physical systems requires numbers, i.e. measurements

 This is what the
- Measurements have dimensions:

[x] = L means "the dimension of x is a Length"

[t] = T means "the dimension of t is a Time"

[m] = M means "the dimension of m is a Mass"

[v] = L/T means "the dimension of velocity is Length/Time

brackets mean!

Models allow us to think about how the numbers fit together

<u>A first check on any model - Dimensional analysis:</u> Both sides of an equation have to have the same dimension

8/31/12 Physics 131 6

Which equation represents the volume of a sphere of radius R

- $1.\underline{2}\pi R$
- 2. $\frac{4}{3}\pi R^{2}$ 3. $\frac{4}{3}\pi R^{3}$ 4. πR^{2}

Which equation could represent the surface area of a cylinder?

- 1. $2\pi R + 2\pi Rh$
- 2. $2\pi R^2 + 2\pi Rh$
- 3. $2\pi R^2 + 2\pi h$
- 4. $\pi R^2 h$

 It says different items can't be added or equated but can't you do that if you convert numbers into the same units or is it in some cases you just can't?

Units

- Units specify which particular measurement we have chosen.
 - The same Dimension can have different units
 - Units should be manipulated like algebraic quantities.
 - Units can be changed by multiplying by appropriate forms of "1" e.g. 1 = (1 inch)/(2.54 cm)

Units are important:

A 125 Million \$ Mistake

http://en.wikipedia.org/wiki/Mars_Climate_Orbiter

Syringe Sizes:

An example from a math exam

 Writing the equation in this problem on a physics exam would receive 0 credit and the comment: "This is a meaningless equation!" The population density of trout in a stream is

$$r(x) = 20 \frac{1+x}{x^2+1}$$

where *r* is measured in trout per mile and x is measured in miles. *x* runs from 0 to 10.

(a) Write an expression for the total number of trout in the stream. Do not compute it.

How would you fix this?

Foothold Ideas: Estimation – Quantifying experience

- Use 1-digit arithmetic
- Do figure out your estimations by starting with something you can plausibly know and scale up or down
- Do check your answer to see if it's reasonable
- You will learn useful numbers for biology

8/31/12 Physics 131 13

Estimate the thickness of a page in a textbook.

- 1. 10⁰ m
- 2. 10⁻¹ m
- 3. 10⁻² m
- 4. 10⁻³ m
- 5. 10⁻⁴ m
- 6. 10⁻⁵ m
- 7. 10⁻⁶ m
- 8. 10⁻⁷ m
- 9. 10⁻⁸ m

Estimation Problem

At typical signal strength, how many signaling molecules sweep past a moving amoeboid cell in one minute?

First number to remember: Typical concentration of signaling molecules: 10 nM

Chemical Signal comes from bottom