

- 1. $10^0 \, \text{m}$
- 2. 10⁻¹ m
- 3. 10⁻² m
- 4. 10⁻³ m
- 5. 10⁻⁴ m

- 6. 10⁻⁵ m
- 7. 10⁻⁶ m
- 8. 10⁻⁷ m
- 9. 10⁻⁸ m

- $1. 10^{0}$
- $2. 10^2$
- $3. 10^4$
- 4. 10⁵
- 5. 10⁶

- 6.10^8
- $7. 10^{10}$
- $8. 10^{12}$
- 9.10^{14}

Activity

Dollar and penny

An example from a math exam

 Writing the equation in this problem on a physics exam would receive 0 credit and the comment: "This is a meaningless equation!" The population density of trout in a stream is

$$r(x) = 20 \frac{1+x}{x^2+1}$$

where *r* is measured in trout per mile and x is measured in miles. *x* runs from 0 to 10.

(a) Write an expression for the total number of trout in the stream. Do not compute it.

How would you fix this?

Activity

Pizza sale

Measurement is basically about counting.

N	Perim	Area	Vol
1			
2			
3			