DEVICES FOR NON - COULOMB E

<u>Inductor</u> is a device which stores a \underline{B} -field. Consider the following: In such a device

If i then B

If
$$\frac{\Delta i}{\Delta t}$$
 then $\frac{\Delta B}{\Delta t}$ then $\frac{\Delta \Phi_B}{\Delta t}$ then $-\varepsilon$

We define the

Inductance
$$L = \frac{-\varepsilon}{\frac{\Delta i}{\Delta t}}$$
 [effect/cause]

Unit of L is $\frac{Volt - \sec}{Amp}$ and is called Henry. And the symbol is

Self Inductance $\frac{\Delta i}{\Delta t}$ and ε in the same coil. A tightly wound solenoid of area A and N turns spread over a length l. If the current is i

$$\underline{B} = \mu_0 n i \hat{y} \qquad \left[n = \frac{N}{l} \right]$$

Parallel to the axis of the solenoid and essentially constant inside it with I varying

$$\frac{\Delta B}{\Delta t} = \mu_0 n \frac{\Delta i}{\Delta t}$$

and

$$\frac{\Delta \Phi_B}{\Delta t} = \mu_0 n A \frac{\Delta i}{\Delta t}$$

In one ring of the solenoid this will cause emf

$$\varepsilon_1 = -\mu_0 n A \frac{\Delta i}{\Delta t}$$

since there are N rings emf, for the entire solenoid

$$\varepsilon_N = -\mu_0 nNA \frac{\Delta i}{\Delta t}$$

So self inductance

$$L = \frac{-\varepsilon_N}{\frac{\Delta i}{\Delta t}} = \mu_0 nNA = \mu_0 n^2 A l = \mu_0 n^2 V$$

V = Al being the volume of the solenoid

Mutual Inductance $\frac{\Delta l}{\Delta t}$ in one coil, induces an *emf* in a second coil because the time varying flux of \underline{B} also occurs inside the second coil. So now we have two coils each of length l one has n_1

turns per meter and the other has n_2 turns per meter and the second coil is wound on top of the first so both have the same cross-section A.

Once again due to current change in coil 1

$$\frac{\Delta\Phi_B}{\Delta t} = \mu_0 n_1 A \frac{\Delta i}{\Delta t}$$

Induced emf in one ring of coil 2

$$\varepsilon_{1n_1} = -\mu_0 n_1 A \frac{\Delta i}{\Delta t}$$

Induced emf in entire 2nd coil

$$\varepsilon_{N_2n_1} = -\mu_0 n_1 n_2 lA \frac{\Delta i}{\Delta t}$$

Mutual Inductance

$$M_{21} = \frac{-\varepsilon_{N_2 n_1}}{\frac{\Delta i}{\Delta t}} = \mu_0 n_1 n_2 V = \sqrt{L_1 L_2}$$

where L_1 and L_2 are the self-inductances of the two coils.

Next, we calculate the work done in establishing current in an inductor – Energy stored in a \underline{B} field: When you close the switch the battery will try to establish a current in the inductor and of course the inductor will object by setting up an emf

$$\varepsilon_L = -L \frac{\Delta i}{\Delta t}$$

when the next Δq of charge makes its way through the inductor the work done will be

$$\Delta W = \Delta q L \frac{\Delta i}{\Delta t} = L i \Delta i$$

since
$$\frac{\Delta q}{\Delta t} = i$$

To calculate work needed to increase current from 0 to I, plot Li as a function of i and we note that $Li\Delta i$ is the area of the rectangle. The area of the triangle tells us how much work is needed to establish I in L.

$$W_B = \frac{1}{2}LI^2$$

Where did all the energy go? Notice that once the current is established the inductor is not empty, there is a \underline{B} -field inside it and W_B is stored in this \underline{B} -field. If you apply it to a solenoid

$$L = \mu_0 n^2 V$$

$$B = \mu_0 n I$$

$$W_B = \frac{1}{2} \mu_0 n^2 I^2 V$$

So energy density of \underline{B} -field

$$\eta_B = \frac{B^2}{2\mu_0}$$

Is the energy stored in $1 m^3$ of B-field.

Devices L-R Circuits

We have three devices:

A <u>Battery</u>: Creates a Coulomb <u>E</u> using chemical energy

and output is the $\varepsilon mf = \varepsilon$.

A Resistor (R): arises because it costs energy to transport charge through a conductor so that if you establish a current i, a voltage drop V appears across R such that

$$V = iR$$

An $\underline{Inductor}(L)$: opposes any time variation of current through it by setting up an εmf

$$\varepsilon = -L \frac{\Delta i}{\Delta t} \qquad L$$

Now we want to study what happens when we connect our 3-devices, Battery, R and L in the circuit below.

At t=0, put the switch as shown (1 \rightarrow 2). The battery immediately wants to set up a current.

However, L promptly objects* by setting up a "back" emf, which will oppose ε , $\varepsilon_B = -L \left(\frac{\Delta i}{\Delta t}\right)_0$

* The "minus" sign in the equation ensures that an inductor always opposes any change in current through it.

Thus it will take time for the current to grow.

Step 1 at t=0, i=0, No potential drop across R. As a function of position on the circuit the potential values are

$$\varepsilon - L \left(\frac{\Delta i}{\Delta t}\right)_0 = 0$$

Step 2 A little time later i has grown some so now $v_R = iR$ and the potentials become

Clearly, $\left(\frac{\Delta i}{\Delta t}\right)_t < \left(\frac{\Delta i}{\Delta t}\right)_0$ Rate of growth has slowed down.

Step 3 A long time later *i* has grown to its full value, *i* stops changing with time, $\frac{\Delta i}{\Delta t} \to 0$ so no more back *emf* from *L*. Potential variation looks like.

 $i(t\to\infty)=\frac{\varepsilon}{R}$

Note:

$$V_L = \varepsilon$$
 at $t=0$, $i=0$

$$V_L = 0$$
 at $t \rightarrow \infty$, $i = \frac{\varepsilon}{R}$

The time variations are controlled by the characteristic time

$$\tau = \frac{L}{R}$$
 (verify that this has dimensions of time)

and look like

After this long time $i = \frac{\varepsilon}{R}$ and a magnetic field has been established in L and stores $\frac{B^2}{2\mu_0}$ of energy per m^3 . So now if we move the switch so $1 \rightarrow 3$ the circuit becomes

No Battery in circuit. Magnetic Energy stored in L is source of current!

Let us start the clock again:

Step 1 t=0, $i=\frac{\varepsilon}{R}$ and the inductor wants to keep i going. Since $\frac{\Delta i}{\Delta t}$ is now—ive, V_L will be +ive and immediately jump to ε .

Step 2 As stored energy in L becomes smaller $\left| \frac{\Delta i}{\Delta t} \right|$ reduces with time.

Step 3 Long time later, all of the stored energy has been used up: $\frac{\Delta i}{\Delta t} \rightarrow 0$, $i \rightarrow 0$.

The time variations are

Decay of i

To Summarize:

- i) L keeps i = 0 when switch first closed
- ii) $V_L \to 0$ as $t \to \infty$
- iii) in an L-R circuit potential precedes current.

QUESTION: Why does τ depend on both L and R?

Exponential functions.

$$V_L = \varepsilon e^{-t/\tau}$$

<u>Devices – AC Generator</u>

Take a coil of area $A(l \times b)$ mount it so that it can rotate freely about the y-axis in the presence of a constant $\underline{B} = B\hat{x}$. Rotate the coil about the y-axis at a constant angular velocity $\underline{\omega} = \omega \hat{y}$. The flux of the \underline{B} -field through the coil is

$$\Phi_B = A\hat{n} \bullet \underline{B}$$
$$= AB\cos(\hat{n}, \underline{B})$$

As the coil rotates the angle between \hat{n} and \underline{B} will change continuously according to the equation

$$\mathcal{G} = \mathcal{G}_0 + \omega t$$

and therefore

$$\Phi_B = AB\cos(\theta_0 + \omega t)$$

Let us make $\, \mathcal{G}_0 = 0 \,$, that is, make $\, \hat{n} \parallel \underline{B} \,$ at $\, t = 0 \,$.

Plot Φ_B as a function of time

an emf will appear in the coil according to

$$\varepsilon = -\frac{\Delta \Phi_B}{\Delta t}$$

which is the negative slope of the Φ_B vs. t curve

and we note

- (i) ε is maximum when Φ_B is zero and zero when Φ_B is maximum
- (ii) As T reduces (ω increases) the slope gets larger and therefore it is reasonable to write $\varepsilon = AB\omega \sin \omega t$

Such a rotating coil generates an emf which reverses every $\frac{1}{2}$ cycle so it is an alternating current generator. This is the principle of all power generation — when you switch on your light, the bulb goes on because you complete a loop in which someone is causing the flux of \underline{B} to change by rotating a coil.

It is instructive to analyze the above device using the concept of motional εmf . As the coil rotates the vertical arms have velocities which vary from $v_Z = \frac{b\omega}{2} \quad \left[\hat{n} \perp \underline{B} \right]$ to zero when $\hat{n} \parallel \underline{B}$ so motional εmf goes from $\varepsilon_{\max} = \omega BA$ to zero. At other times the angle between \underline{y} and \underline{B} is also $\underline{\Theta} \quad \left[\underline{y} \parallel \hat{n} \right]$ so

$$\varepsilon = \omega B A \sin \omega t$$

which is exactly the answer claimed above by using the Faraday-Lenz equation.