Chapter 23 Revision problem

While we are waiting, please try problem 14 – "You have a collection of six 1kOhm resistors...."

Electric Circuits

- Elements of a circuit
- Circuit topology
- Kirchhoff's law for voltage and current
- Series and parallel circuit
- Household circuits
- RC circuits
- Nervous system and electricity

Circuits

- Combine batteries, resistors, capacitors to make something useful
- First circuits to drive something biophysics
- Neurons are circuits in the central nervous system

Elements of a circuit

- We will use the following pictograms or symbols
- IEEE and ANSI standard
- All "ideal" components

Circuit Diagram

Convert from pictorial representation to standard symbols

Circuit Topology

- Circuits follow simple laws of topology you can stretch the wires, but you must preserve the number and order of vertices, and order of components
- Its normal to re-draw a circuit to make it easier to calculate physical quantities like current and potential difference

Checking Understanding

The following circuit has a battery, two capacitors and a resistor.

Which of the following circuit diagrams is the best representation of the above circuit?

Answer

The following circuit has a battery, two capacitors and a resistor.

Which of the following circuit diagrams is the best representation of the above circuit?

Kirchhoff revisited

We saw from the last chapter that

$$\sum I_{in} = \sum I_{out}$$

The sum of the currents into a junction is the same as the current flowing out.

Kirchhoff's loop law of electric potential

- The energy of an electron in a potential is U=qV
- •Flowing around a circuit, the electron comes back to the same potential, so it cant gain or lose energy

10

Kirchhoff's loop law of electric potential

•The net change in the electric potential around any loop must be zero

$$\Delta V = \sum_{i} \Delta V_{i} = 0$$

Multiple batteries in a circuit

- •Sometimes you see multiple batteries in a circuit.
- •The larger emf will drive current backwards through the battery with a smaller emf

Series and Parallel Circuits

There are two types of circuit topology which are useful to identify when calculating current and potential differences

Series Circuits

Two resistors R₁ and R₂ in series have the same affect as a single resistance of R_{TOTAL}

$$R_{TOTAL} = R_1 + R_2$$

Series Circuits

In general, the total resistance of a chain of resistors R_{TOTAL} is the sum of the individual resistances

$$R_{TOTAL} = \sum_{j} R_{j}$$

Parallel Circuits

Two resistors R₁ and R₂ in parallel have the same affect as a single resistance of R_{TOTAL}

$$\frac{1}{R_{TOTAL}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Parallel Circuits

In general, the total resistance of a chain of resistors R_{TOTAL} can be calculated from the sum of the reciprocals of the individual resistances

$$\frac{1}{R_{TOTAL}} = \sum_{j} \frac{1}{R_{j}}$$

Measuring Voltage and Current

- We use "ideal" instruments for measuring currents – they measure the voltage or current without affecting the quantities we are measuring.
- This is quite close to today's instruments.

Ammeter

- Measures current
- Used in series
- Has zero resistance

Voltmeter

- Measures potential difference
- Used in parallel
- Has infinite resistance

Multimeters

- We use multimeters which have an external power supply (battery) and semiconductor amplifiers
- Will also measure resistance

Household electricity

- Something we should all know about.
- DC (Direct Current) is generated by the emf in batteries - used in cars, boats, trailers.
- Household electricity is generated by electrical generators which work by producing AC (Alternating Current), but the principles are the same.

Grounding

- Grounding (or earthing)
 is setting one side of the
 circuit to the same
 potential as the Earth's
 surface
- This can make electrical items safer.
- Ground is carried by the larger prong on a 3-pin plug

Parallel or Serial?

- All wall outlets are set to carry 120V potential
- This is done by using parallel circuits everywhere
- Fuses added to protect against large currents

Household energy units

- Different units are used for household electricity
- We pay for electricity monthly, so we need a bigger unit
- A space heater is rated at about 1kW, say we run it for 3 hours a day for a month
- Use kilowatt-hours
- 1 kW hour = 1000W*3600s = 3.6 MegaJoules

Capacitors in Parallel and Series

- Capacitors are used in parallel and series as well.
- They look almost, but not quite, exactly opposite of the resistance equations....

Capacitors in Parallel

To calculate total capacitance, need total charge stored

$$C_1 = \frac{Q_1}{V_1}, C_2 = \frac{Q_2}{V_2}, C_3 = \frac{Q_3}{V_3}$$

$$C_{total} = \frac{Q_1 + Q_2 + Q_3}{V} = C_1 + C_2 + C_3$$

Capacitors in Parallel

Capacitance in parallel add together

$$C_{TOTAL} = \sum_{j} C_{j}$$

Capacitors in Series

- To calculate total capacitance, need total charge stored.
- Charge must be the same on the 2 capacitors

$$\frac{1}{C_{1}} = \frac{V_{1}}{Q_{1}}, \frac{1}{C_{2}} = \frac{V_{2}}{Q_{2}}$$

$$\frac{1}{C_{TOTAL}} = \frac{V_{1} + V_{2}}{Q} = \frac{1}{C_{1}} + \frac{1}{C_{2}}$$

Capacitors in Series

 The total capacitance of capacitors in series can be calculated from the sum of the reciprocals

Charge must be the same on the inside

capacitors

$$\frac{1}{C_{TOTAL}} = \sum_{j} \frac{1}{C_{j}}$$

RC Circuits and Time

RC circuits are special circuits which have a characteristic clock built in.

The capacitor will gradually discharge

We can show that the rate of change of charge is proportional to the remaining charge on the capacitor

$$V = \frac{Q}{C} = IR = R \frac{\Delta Q}{\Delta t}$$
$$Q = RC \frac{\Delta Q}{\Delta t}$$

- Similarly, the rate of change of voltage is proportional to the voltage
- Rate of change of current is proportional to the current

$$V = RC \frac{\Delta V}{\Delta t} \qquad I = RC \frac{\Delta I}{\Delta t}$$

- It can be shown that the solutions to these equations is an exponential
- Where I₀ and V₀ are the initial values, and RC is the time constant

$$V(t) = V_0 e^{-t/RC}$$
 $I(t) = I_0 e^{-t/RC}$

Discharging a capacitor through a resistor

$$I(t) = I_0 e^{-t/RC}$$

$$V(t) = V_0 e^{-t/RC}$$

Charging a capacitor through a resistor

$$I(t) = I_0 e^{-t/RC}$$

$$V(t) = V_{final}(1 - e^{-t/RC})$$

- Easy way to build a clock or oscillator
- Make a switch close or open when the potential across a capacitor reaches a certain voltage

Electrical Circuits and Biology

- Historically bioelectrics was one of the first uses of electric current to move something – up until then there was electrostatic and magnetic phenomena
- Volta and Galvani used electricity to move dead frogs legs.
- Cells can drive potassium and sodium ions through membranes with ion pumps – creating an emf

Ion pumps in a cell

- The cell attains a 70mV potential across the cell membrane 7nm thick
- This is an electric field of 10MV/m

Neurons

Neuron cells collect inputs to the cell, sends down the axon and delivers a charge to other neurons or muscle fibers

RC time constants for a nerve

- Resistivity of a cell membrane: 36x10⁶ Ωm
- Using the size of the cell, we get $R=32M\Omega$
- Dielectric constant for cell membrane is 9.0
- C= 89pF
- RC time constant is 3ms
- Very long time for 1 neuron

Summary

- Elements of a circuit
- Circuit topology
- Kirchhoff's law for voltage and current
- Series and parallel circuit
- Household circuits
- RC circuits
- Nervous system and electricity

Homework problems

Chapter 23 Problems 45, 49, 52, 55, 59, 68, 69, 73