Osclillations

Simple Harmonic Motion (SHM)
Position, Velocity, Acceleration
SHM Forces

SHM Energy

Period of osclillation

Damping and Resonance



Revision problem
Please try problem #31 on page 480

A pendulum clock keeps time by the swinging
of a uniform solid rod...



Simple Harmonic Motion

e Pendulums

» Waves, tides
* Springs




Simple Harmonic Motion
Requires a force to return the system back
toward equilibrium
« Spring — Hooke’s Law
* Pendulum and waves and tides — gravity

Oscillation about an equilibrium position with a
linear restoring force Iis always simple
harmonic motion (SHM)



At equilibrium----....,
there is no net
force.

/)

[Air track L

A displacement causes the
spring to exert a force toward
the equilibrium position. -..,

is proportional to
the displacement.
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Block s
equilibrium
position

Moving the
block upward . .
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= Spring
= stretched
= by AL —y

—

.

...resultsina
net force
downward.

Phase Space

Walocity




0 and s are 0 and s are
negative on positive on
the left. the right.

L

Arc length
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0 and s are 0 and s are
negative on positive on
the left. the right.

L

Arc length
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Kinematics of SHM

* The angle for the
sinusoidal wave
changes with time.

» |t goes full circle O to
21T radians in one
period of revolution, T.

&Y

X(t) = Acos| —
w7,
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the position-versus-time graph
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Position
Velocity
Acceleration

.'.
s

:

s

=
2
0]
(0]
2
c
[}
2
3
<
c
[}
@
3
o
[}
[\
2
€ =
z 2
& 5
mp
..-l_..m
ml.
c
©
79
Od
Z ¢
A
o 9
ol
Y 0
<o
~
o
@]
N
6]
-
&
o
e
>
Q
)
¢)

LT
o ©
=
= 0
77
7.
9
Ga
>3
&5
LB
m.m
0K
o5 %
Qv
gL
o4
]

£ £
= a0




Position

Velocity

Acceleration
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Position

Velocity

Acceleration

:
‘=
I
I
5
%]
-
)
7
g
]
=
<
T
-
)
Q
Q
&
Q
=
=

S
]
g

=
v
et
b}
-

g
=
)
>

g
=
s

2

e
[=¥
S
ke
)

=
2
0]
(0]
2
c
[}
2
3
<
c
[}
@
3
o
[}
[\
2
€ =
z 2
& 5
mp
..-l_..m
ml.
c
©
79
Od
Z ¢
A
o 9
ol
Y 0
Sa
~
o
@]
N
6]
-
&
o
e
>
Q
)
¢)




Kinematics of SHM

SHM equations of motion

X(t) = Acos(2ft)
v(t) =—v__ sin(2xft)

|||||




FPhase Space

Velocity




FPhase Space

Velocity




Particle in uniform
circular motion

The x-component of the
particle’s position describes the
position of the ball’s shadow.

J
-
U

—A 0

A cos¢
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Kinematics of SHM
SHM equations of motion

TTTTT
|||||

X(t) = Acos(2xit) NAT
V(t) = —27fAsin(2ft) il A

| | \ |
|||||||||




SHM and Energy

* Energy Is conserved:

* Bounces between
kinetic and potential
energy

total

E Ekinetic + E
L5

kinetic — E myv

potential

E

1

A 2
potential — E kX

E

| |
®) =
| | | |
: : ‘Mechanical,
' Energy | energy |
| : E=K+U ,
[ | / [ |
P e "
| L/ N\ ! _
\ / \ /A Potential
| E 1\ I .
R Y , energy U
Turning 1+ /\ | LINX ! instis
1 4 | \ |
pornt \\: : | :/ energy K
f ! X
—A 0 A
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energy !
E=K+U |

Potential
energy U
Kinetic
energy K
X
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Finding the period of osclillation for
a spring

We now have 2 equations for v

% ‘/ % A = 24A
1/ o] = 2721/
27z

Period of oscillation Is independent of the amplitude
of the oscillation.

max

21



Finding the period of osclillation for

a pendulum

Consider the acceleration
using the equation for the

return force, and the
relation between 0
acceleration and L from equilibrium.
displacement:

m m L S\ (F )

Arc length

max
L 22



Finding the period of osclillation for
a pendulum

We can calculate the period of
oscillation

= 3 1/g ,T=27z/L
27t \ L g 7

Period Is independent of the mass,
and depends on the effective length of

the pendulum. Oy
\
Arc length
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3 A graph of x_as a function of
time is an exponential decay.

.0

*
-
&’

X () =Ae'"

max

The time constant 7 is the time for
the maximum displacement to
decay to 1/e of its initial value.
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(b) x

A graph of x_as a function of
time is an exponential decay.

-
.0

*
-
&’

*
*
*

The time constant 7 is the time for
the maximum displacement to
decay to 1/e of its initial value.
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Damped Oscillations

The time constant, 1, Is a property of
the system, measured in seconds

X (t)=Ae™""

*A smaller value of T means more damping
— the oscillations will die out more quickly.

*A larger value of T means less damping,
the oscillations will carry on longer.
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¥ Critical damping

Overdamping

—
\\

—

Underdamping

For critical damping, there is no real
oscillation; the system simply relaxes
back to its equilibrium position.
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Driven Oscillations and

Resonance
An oscillator can be Amplitude
driven at a different

frequency than its This

resonance or natural
frequency.

The amplitude can be
large If the system Is

undamped.
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Tidal resonances

* Ocean tides are P
produced from the - Moon |
Moon (and Sun) @y

gravitational pull
on the oceans to
make a 20cm
wave. ' /

* Moon drives the j::'
wave at 12 hours
25 minutes

far tidal bulige —
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Tidal resonances

The natural resonance
of local geography
can affect this: e.qg.
Bay of Fundy In
Canada where the
tidal range is S S B

amplified from the o < e
20cm wave to 16m. "% BAYOF FUNDY

-~/ NEWFOUNDLAND ¢
TERRE-NEUVE V(1



Natural geography can

Tidal resonances

also make double

tides:
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Undamped driven resonance

Tacoma Narrows Bridge,
Washington State, 1940




Summary

Simple Harmonic Motion (SHM)
Position, Velocity, Acceleration
SHM Forces

SHM Energy

Period of osclillation

Damping and Resonance
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Homework problems

Chapter 14 Problems
48, 49, 50, 52, 54, 59, 62, 63
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