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Oscillations

• Simple Harmonic Motion (SHM)

• Position, Velocity, Acceleration

• SHM Forces

• SHM Energy

• Period of oscillation

• Damping and Resonance
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Revision problem

Please try problem #31 on page 480

A pendulum clock keeps time by the swinging 
of a uniform solid rod…
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Simple Harmonic Motion

• Pendulums

• Waves, tides

• Springs
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Simple Harmonic Motion

Requires a force to return the system back 
toward equilibrium

• Spring – Hooke’s Law

• Pendulum and waves and tides  – gravity

Oscillation about an equilibrium position with a 
linear restoring force is always simple 
harmonic motion (SHM)
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Springs

Hooke’s Law F=-kx
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Springs

Hooke’s Law F=-kx
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Pendulum

For a small angle, the 
force is proportional 
to angle of deflection, 
θ.
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Pendulum

For a small angle, the 
return force is 
proportional to the 
distance from the 
equilibrium point:
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Kinematics of SHM

Simple Harmonic motion can be described by a 
sinusoidal wave for displacement, velocity and 
acceleration:
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Kinematics of SHM

• The angle for the 
sinusoidal wave 
changes with time.

• It goes full circle 0 to 
2π radians in one 
period of revolution, T.
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Kinematics of SHM

•We define the frequency 
of revolution as

Frequency, f, has units s-1 or 
Hertz, Hz
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Kinematics of SHM

• Velocity is 90o or π/2 
radians out of phase:
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Kinematics of SHM

• Acceleration is 180o or 
π radians out of phase
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Kinematics of SHM

SHM equations of motion
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Calculating vmax

A circular motion when 
looked end-on gives us a 
velocity like:
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Calculating vmax

The velocity around the 
circle will be
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Calculating amax

For circular motion, we 
know about acceleration 
and forces
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Kinematics of SHM

SHM equations of motion

 ftAfta

ftfAtv

ftAtx







2cos)2()(

)2sin(2)(

)2cos()(

2







19

SHM and Energy

• Energy is conserved:

• Bounces between 
kinetic and potential 
energy
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SHM and Energy

• The max KE must 
equal the max PE:
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Finding the period of oscillation for 
a spring

We now have 2 equations for vmax:

Period of oscillation is independent of the amplitude 
of the oscillation.
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Finding the period of oscillation for 
a pendulum

Consider the acceleration 
using the equation for the 
return force, and the 
relation between 
acceleration and 
displacement:
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Finding the period of oscillation for 
a pendulum

We can calculate the period of 
oscillation

Period is independent of the mass, 
and depends on the effective length of 
the pendulum.
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Damped Oscillations

All the oscillating systems have 
friction, which removes energy, 
damping the oscillations
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Damped Oscillations

We have an exponential decay of 
the total amplitude
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Damped Oscillations

The time constant, τ, is a property of 
the system, measured in seconds

•A smaller value of τ means more damping 
– the oscillations will die out more quickly.

•A larger value of τ means less damping, 
the oscillations will carry on longer.

/
max )( tAetx 



27

Damped Oscillations

• under-damped τ>>T  

• critically-damped τ~T 

• over-damped τ<<T 
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Driven Oscillations and 
Resonance

An oscillator can be 
driven at a different 
frequency than its 
resonance or natural 
frequency.

The amplitude can be 
large if the system is 
undamped.
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Tidal resonances

• Ocean tides are 
produced from the 
Moon (and Sun) 
gravitational pull 
on the oceans to 
make a 20cm 
wave.

• Moon drives the 
wave at 12 hours 
25 minutes
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Tidal resonances

The natural resonance 
of local geography 
can affect this: e.g. 
Bay of Fundy in 
Canada where the 
tidal range is 
amplified from the 
20cm wave to 16m.



31

Tidal resonances

Natural geography can 
also make double 
tides:
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Undamped driven resonance

Tacoma Narrows Bridge, 
Washington State, 1940
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Summary

• Simple Harmonic Motion (SHM)

• Position, Velocity, Acceleration

• SHM Forces

• SHM Energy

• Period of oscillation

• Damping and Resonance
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Homework problems

Chapter 14 Problems

48, 49, 50, 52, 54, 59, 62, 63


