

Outline

- Go over Q10
- Recap: Capacitors
 - Dielectrics
- Magnetism basics
- Magnetism and moving charge
- The magnetic field
- The magnetic force

5/4/11

Physics 122

2

Capacitors: Foothold ideas

6

- Although local neutrality is almost always true, various configurations support local charge
- Such separations are always associated with electric fields and hence with potential differences. $E\Delta x = -\Delta V$
- The ratio of the charge separation to the potential difference is the capacitance. $Q = C\Delta V$
- Charge separations take work to create and are associated with stored energy. $\Delta U = \frac{1}{2}Q\Delta V$

Magnetism: A New Non-Touching Force

- ■What is your experience with magnets?
- ■Generate tentative foothold principles.

Physics 122 13

Foothold ideas: Phenomenology of Magnets

- Certain objects (magnets) attract and repel other magnets depending on orientation.
- Magnets (all orientations) attract a certain class of other objects - iron, steel,... but not all metals (e.g., aluminum,
- Objects that are attracted by magnets can be made into magnets by being stroked consistently in one direction with a
- Magnets can lose their magnetism by heating or hammering..
- Each part of a broken magnet still shows attraction and repulsion with other magnets.

14

Is Magnetism a New Force?

Or is it a form of gravity or electricity?

■ It's not gravity:

Gravity only attracts.

Magnets both attract and repel.

■ It's not electricity:

Freely pivoting magnets orient them with respect to N-S, charges do not.

Magnets attract (stick to) different kinds of materials than charges do.

5/4/11 Physics 122 **16**

Model of magnetism 1: Magnetic poles

- Magnets are made up of "magnetic charges" analogous to electric charges but different. We will call them "magnetic poles" – North and South to distinguish them from Positive and Negative.
- Magnetic materials have N and S just like they have + and
 When they are magnetized, the N's and S's separate.
- When magnetic materials are stroked with a magnet, the N's and S's are pulled apart.
- When a magnet is heated, the N's and S's jostle about and get mixed.

5/4/11 Physics 122 **17**

Model of magnetism 2: Magnetic dipoles

- All matter contains small "magnetic dipoles" little bar magnets that cannot be broken.
- When magnetic materials are magnetized, the little dipoles are aligned and the attractive/repulsive forces they exert on each other hold each other in place.
- When they are heated, the little magnets lose their alignment and go random.

5/4/11 Physics 122	18
--------------------	----

	_		
	_		
_			
	_		
	_		
	-		
	-		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	_		
	-		
	_		
	<u>-</u>		
	- -		
	<u>-</u>		
	- -		
	- -		
	- -		
	-		
	-		
	- - -		
	-		
	-		
	- - - -		
	- - - -		
	- - -		
	- - - -		
	- - - -		

Is there "magnetic charge"?

- If you break a magnet in half, both parts are still full (N-S) magnets.
- You can do this all the way down to a single electron and it still holds true (and you can't break a single electron).
- Our "little dipoles" turn out to be electrons.

5/4/11 Physics 122 **19**

Basic Particles

The fundamental particles making up matter (electrons and protons and neutrons) can be classified by how they behave in response to (and as sources of) gravity, electricity, and magnetism.

	Mass	Charge	Magnetic Moment
proton	1.67 x 10-27 kg	1.6 x 10-19 C	0.0015 Bohr magnetons
neutron	1.67 x 10 ⁻²⁷ kg	0	0.0010 Bohr magnetons
electron	9.1 x 10 ⁻¹¹ kg	-1.6 x 10 19 C	9.28 Bohr magnetons

Magnetic Fields?

- Magnetic forces like gravitational and electrical ones act at a distance.
- Is it useful to set up a third field a "magnetic field" to describe this?
- As you know from lab, the force between dipoles is rather complex but if we think about electric dipoles we can get an idea.

5/4/11 Physics 122 **21**

Defining a magnetic field

- Choose the direction of a magnetic field at a particular location in space to be given by the direction a small compass needle would point if placed at that location.
- Measure the magnitude by measuring the torque the field exerts on a compass needle attached to a spring.

5/4/11 Physics

24

5/4/11 Physics 122

Moving Electric Charges Respond to Magnetic Fields

- We are saved from a very complicated definition of the magnetic field by a surprising and interesting connection between electricity and magnetism.
- Moving electric charges feel a force that is
 - proportional to their speed,
 - proportional to their charge
 - perpendicular to the direction of their velocity
 - perpendicular to the direction that a compass needle would point if placed in the charge's position.

Physics 122

25

Definition of the Magnetic Field

- Choose the direction of a magnetic field at a particular location in space to be given by the direction a small compass needle would point if placed at that location.
- The magnitude is determined by passing a charge q through that location moving with a velocity v. The force it feels is (Lorentz force law)

 $\vec{F}_{B \to q} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

26

- We created the cross product when studying torque in order to produce a vector that was proportional to the magnitudes of two
- The cross product of two vectors

 - has a magnitude equal to the area of the

The Cross Product vectors and perpendicular to both of them. - has a direction perpendicular to both vectors and given by a RH Rule parallelogram formed by the two vectors. 27

- perpendicular to the velocity, only the direction will change, not the speed.
- The motion will be along a circular path.

5/4/11

Physics 122

These forces are the basics behind many devices

- Cyclotron
- Mass spectrometer
- Electron microscope

